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Chapter 1: Introduction

The standard model of particle physics provides a detailed description of a universe in

which all matter is composed of a small number of fundamental particles, which interact

through the exchange of force–carrying gauge bosons (the photon, W±, Z and gluons). The

organization of the matter and energy in this universe is determined by the effects of three

forces; the strong, weak, and electromagnetic. The weak and electromagnetic forces are the

low energy manifestations of a single electro-weak force, while the strong force binds quarks

into protons and neutrons. The standard model does not include gravity, as the effect of

this force on fundamental particles is negligible.

Four decades of experimental tests, spanning energies from a few electron-volts (eV) up

to nearly two TeV, confirm that the universe described by the standard model is a reasonable

approximation of our world. For example, experiments have confirmed the existence of the

top quark, the W± and the Z bosons, as predicted by the standard model [1, 2, 3, 4, 5]. The

latest experimental averages for the masses of the top quark, W± and Z are respectively

173.1± 0.6(stat.)±1.1(syst.) [6], 80.399± 0.023 [7] and 91.1876± 0.0021 GeV/c2 [8].

The SM is a gauge field theory of zero mass particles. However, the SM is able to

accommodate particles with non–zero mass through the introduction of a theoretical Higgs

field which permeates all of space. Fermions gain mass through interactions with this field,

while the longitudinal components of the massive W± and Z are the physical manifestations

of the field itself. Introduction of the Higgs field, directly leads to the predicted existence of

an additional particle, the Higgs boson. The Higgs boson is the only particle of the standard

model that has not been observed, and is the only unconfirmed prediction of the theory. The

standard model describes the properties of the Higgs boson in terms of its mass, which is a

free parameter in the theory. Experimental evidence [9, 7] suggests that the Higgs mass has

a value between 114.4 and 186 GeV/c2.

Particles with a mass in this range can be produced in collisions of less massive particles
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accelerated to near the speed of light. Currently, one of only a few machines capable of

achieving collision energies large enough to potentially produce a standard model Higgs

boson is the Tevatron proton—antiproton collider located at Fermi National Accelerator

Laboratory in Batavia, Illinois.

This dissertation describes the effort to observe the standard model Higgs in Tevatron

collisions recorded by the Collider Detector at Fermilab (CDF) II [10] experiment in the

ZH → `+`−bb̄ production and decay channel. In this process, the Higgs is produced along

with a Z boson which decays to a pair of electrons or muons (Z → `+`−), while the Higgs

decays to a bottom anti–bottom quark pair (H → bb̄).

A breif overview of the standard model and Higgs theory is presented in Chapter 2.

Chapter 3 explores previous searches for the standard model Higgs at the Tevatron and

elsewhere. The search presented in this dissertation expands upon the techniques and

methods developed in previous searches. The fourth chapter contains a description of the

Tevatron collider and the CDF II detector. The scope of the discussion in Chapter 4 is

limited to the experimental components relevant to the current ZH → `+`−bb̄ search.

Chapter 5 presents the details of object reconstruction; the methods used to convert

detector signals into potential electrons, muons or quarks. Chapter six describes the data

sample studied for the presence of a ZH → `+`−bb̄ signal and details the techniques used to

model the data. The model accounts for both signal and non–signal processes (backgrounds)

which are expected to contribute to the observed event sample.

Chapters 7 and 8 summarize the event selection applied to isolate ZH → `+`−bb̄

candidate events from the data sample, and the advanced techniques employed to

maximize the separation of the signal from background processes.

Chapters 9 and 10 present the systematic uncertainties affecting our modeling of the data

sample and the results of the search. Chapter 11 presents a discussion of ZH → `+`−bb̄ in

the context of the overall Tevatron efforts to observe a standard model Higgs signal.
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Chapter 2: The Standard Model and

the Higgs Boson

This chapter presents an outline of the standard model. The chapter centers on a

discussion of the Higgs Mechanism and an overview of the Higgs production and decay

modes most relevant to experimental searches.

2.1 The Standard Model

In the standard model [11], particles are divided into two categories, fermions and bosons.

Fermions are particles of half integer spin, while bosons have integer spin. Naturally, the

elementary particles of the model (12 leptons, 36 quarks, and 12 gauge particles), fall into

these two categories. Leptons and quarks are fermions, while the gauge particles are bosons.

The properties of the quarks, leptons and gauge bosons are summarized in Tables 2.1-2.3.

Table 2.1: The Properties of the Quarks.

particle charge spin ∼ mass

u

d

+2
3

−1
3

1
2

1
2

1.5− 3.3 MeV/c2

3.5− 6 MeV/c2

c

s

+2
3

−1
3

1
2

1
2

1.27 GeV/c2

105 MeV/c2

t

b

+2
3

−1
3

1
2

1
2

171.3 GeV/c2

4.2 GeV/c2

There are four types of interactions between particles: electromagnetic, weak, strong

and gravitational. The standard model describes only the electromagnetic, weak, and

strong interactions, ignoring gravity, whose effects are too feeble to be significant at the
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Table 2.2: The Properties of the Leptons.

particle charge spin ∼ mass(MeV
c2

)

e

νe

−1

0

1
2

1
2

.511

< 15 eV
c2

µ

νµ

−1

0

1
2

1
2

105

< .17

τ

ντ

−1

0

1
2

1
2

1777

< 24

Table 2.3: The Properties of the Gauge bosons.

particle charge spin ∼ mass(GeV
c2

)

γ 0 +1 0

g 0 +1 0

W± ±1 +1 80

Z0 0 +1 91

level of elementary particle interactions. The strong interactions are described by quantum

chromodynamics (QCD), and a combined description of the electromagnetic and weak

interactions is contained in electroweak theory.

Standard model interactions are mediated by the exchange of spin–1 gauge bosons. For

the electromagnetic interaction, the mediating particle is the massless photon (γ), while the

mediators of the strong force are eight massless gluons (g). Similarly, the weak force is

mediated by the Z0, W+ and W− bosons.

2.1.0.1 The Strong Force

Quarks and gluons carry color charge, usually denoted r,g,b, for red, green and blue.

The concept of color charge was suggested by Greenberg [12], as a way to ensure that the

quark model would abide by the Pauli exclusion principle. Color serves as a distinguishing
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Figure 2.1: These are the fundamental strong interaction vertices.

Figure 2.2: This is the fundamental vertex of the electromagnetic interaction. Here, f
represents a fermion.

feature, allowing otherwise identical quarks to occupy the same state. Particles containing

a qq̄ combination are called mesons, while those consisting of a qqq combination are called

baryons. Mesons, baryons and any other quark combination, must have zero net color charge

(for example, blue with anti-blue, or red, green and blue). Objects carrying color charge

participate in strong interactions. The fundamental strong interaction vertices are shown in

Fig. 2.1.

2.1.0.2 The Electroweak Force

Electroweak theory contains a unified description of the weak and electromagnetic forces

under the SU(2)L

⊗
U(1)Y gauge group. The electromagnetic force is experienced by all

charged particles. The basic electromagnetic interaction vertex is shown in Fig. 2.2.

Leptons and quarks participate in weak interactions, with neutral current weak

interactions mediated by the Z0, and charged current interactions mediated by W+ or W−.

The fundamental vertices of leptonic weak interactions are shown in Fig. 2.3. It should

be noted (assuming that neutrinos are massless) that leptonic weak interactions conserve
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Figure 2.3: These are the fundamental leptonic weak interaction vertices. In the diagram
on the left, `− represents a charged lepton, while in the diagram on the right ` denotes a
charged lepton or a neutrino.

the lepton numbers Le, Lµ and Lτ ; meaning cross–generational leptonic weak interactions

are forbidden.

Quark weak interactions also come in two forms, neutral and charged. Neutral current

quark interactions are similar to leptonic weak interactions, in that they do not mix

generations; they are flavor conserving. However, charged current weak interactions can

mix generations. This is because the weak eigenstates (d′,s′,b′), are not equivalent to the

mass eigenstates (d,s,b), with the weak eigenstates being linear combinations of the mass

eigenstates.

The two sets of eigenstates, are connected by the CKM matrix.


d′

s′

b′

 =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb




d

s

b

 (2.1)

Where the absolute value of the CKM matrix entries measures the likelihood of quark

mixing. The V −A [13] structure of the weak interaction allows for maximal parity violation,

while the inclusion of a complex phase for some CKM matrix elements, incorporates the much

smaller effect of CP violation into the standard model.
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2.1.1 Experimental Verification and Challenges

To date, all experimental tests (with the possible exception of neutrino mixing) are found

to be consistent with the standard model. For example, the predicted existence of the massive

gauge bosons, W+, W− [1] and Z0 [2], was confirmed at CERN in 1983. In addition, weak

neutral current interactions were first proposed in the standard model. The discovery of this

type of weak interaction at CERN in 1973 [14], was a large success for the model.

The observation of neutrino flavor oscillation [15, 16] may be the first significant evidence

of a physical process contrary to the standard model. In the SM, neutrino masses are typically

assumed to be zero. However, neutrino mixing implies non-zero masses. A detailed discussion

of non-zero neutrino masses and the consequences for the standard model is available in [17].

The only particle predicted by the standard model which has not been observed is the

Higgs boson. The Higgs boson is a by-product of spontaneous symmetry breaking under the

Higgs mechanism [18].

2.1.2 Gauge Invariance

As early as 1961 [19], the derivation of particle interactions from a Lagrangian has been

tried, starting from the imposition of local gauge invariance. A simple demonstration of the

gauge principle can be seen in QED under the gauge group U(1)em. The following

discussion is adapted from more detailed presentations in Griffiths’ “Introduction to

Elementary Particles” [20] and Pich’s “The Standard model of electroweak

interactions” [21]. The Dirac equation for a free particle wave-function ψ, can be derived

from the Lagrangian density Lf :

Lf = ψ̄(iγµ∂µ)ψ − ψ̄mψ (2.2)
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Applying the following global U(1)em gauge transformation to the wavefunctions leaves Lf

unchanged.

ψ → eiχψ (2.3)

If however, χ depends upon the space time coordinates x, then the transformation is a

local gauge transformation and L is not invariant:

Lf → e−iχψ̄(iγµ∂µ)eiχψ − ψ̄mψ

= Lf − ψ̄[γµ∂µχ(x)]ψ (2.4)

Lf can be made invariant under the local gauge transformation by introducing the

covariant derivative Dµ,

Dµ = ∂µ + ieAµ (2.5)

where Aµ is a gauge field, chosen with the transformation property:

Aµ → Aµ −
1

e
∂µχ(x) (2.6)

Then prior to applying the local transformation, the ∂µ in Eq. 2.2 is replaced by Dµ to

get:

Lf −→ L′f = ψ̄[iγµ(∂µ + ieAµ)]ψ − ψ̄mψ

= Lf − eψ̄γµAµψ (2.7)

Applying the local transformation to the wavefunctions in L′f and using the

transformation property of the gauge field gives an invariant free Lagrangian:

L′f → Lf − ψ̄[γµ∂µχ(x)]ψ − eψ̄γµ[Aµ −
1

e
∂µχ(x)]ψ
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= Lf − eψ̄γµAµψ

= L′f (2.8)

The introduction of the gauge field Aµ, requires the addition of two terms, Lg and Lmγ ,

to the free Lagrangian L′f . Lg is the Lagrangian for the gauge field, and has the form:

Lg = −1

4
FµνFµν (2.9)

where, Fµν is the electromagnetic strength tensor.

Fµν = ∂µAν − ∂νAµ (2.10)

The addition of Lg to the Lagrangian does not affect the invariance of L′f under the local

transformation, since Fµν is invariant under the transformation property of Aµ.

The gauge field also adds a mass term Lmγ , to the Lagrangian L′f , of the form:

Lmγ ∼ (mγ)
2AµAµ (2.11)

which is not invariant. For gauge fields expressed as massless bosons, this term is zero;

in this case the boson is the photon with mγ = 0.

2.1.3 Spontaneous Symmetry Breaking and the Higgs Mechanism

In the standard model, unification of the weak and electromagnetic forces occurs under

the gauge group SU(2)L

⊗
U(1)Y , and the spontaneous breaking of this symmetry via the

Higgs mechanism imparts mass to the W+,W− and Z0 bosons.
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Considering only leptons and assuming a non-zero mass for neutrinos, let

ψ1 =

 νL

`L

 (2.12)

where, `L represents a left-handed lepton 4-spinor, and νL is the spinor for the left-handed

component of the corresponding neutrino. Similarly, let

ψ2 = νR and ψ3 = `R (2.13)

where, νR and `R are the right handed components of the neutrino and lepton. The free

Lagrangian for the ψi,

Lf =
3∑

k=1

iψ̄k(x)γ
µ∂µψk(x) (2.14)

is invariant under the global U(1)Y and SU(2)L transformations, where SU(2)L only acts

on the left-handed ψk doublet, and Y is the hypercharge.

Local invariance of Lf , under SU(2)L

⊗
U(1)Y is accomplished by introducing zero-

mass gauge fields W 1
µ , W 2

µ , W 3
µ and Bµ with appropriate transformation properties, and the

covariant derivatives:

D1
µ = ∂µ −

ig

2
σ1W 1

µ − ig′y1Bµ (2.15)

and

Dρ = ∂µ − ig′yρBµ ρ = 2, 3 (2.16)

where, g and g′ are coupling constants, the yρ are hypercharge components, and the σi

are the Pauli matrices.
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Including the Lagrangian for the gauge fields, Lg, the combined Lagrangian L

L = Lf + Lg =
3∑

k=1

iψ̄k(x)γ
µDkψk(x)−

1

4
(Wµν)

i(Wµν)i − 1

4
BµνBµν (2.17)

is invariant locally under SU(2)L

⊗
U(1)Y transformations. Although, L is invariant, it

contains no mass terms. Inclusion of lepton masses would have mixed right and left-handed

states breaking the invariance, while masses for the gauge fields would introduce invariant

terms into L as discussed in Section 2.1.2.

Before proceeding, it should be noted that the gauge fields, W i
µ and Bµ, are not equivalent

to the physical fields W±
µ , Z0

µ and γ0
µ. Instead, the physical fields are linear combinations of

the gauge fields:

W±
µ =

1√
2
(W 1

µ ∓W 2
µ) (2.18)

and  γ0
µ

Z0
µ

 =

 cos θw sin θw

− sin θw cos θw


 Bµ

W 3
µ

 (2.19)

where θw is the Weinberg angle.

The gauge fields in Eq. 2.17 can acquire the appropriate masses by the process known as

the Higgs mechanism. To begin, let the scalar doublet, Φ and Lagrangian, LΦ be defined as,

Φ =

 ϕ+

ϕ0

 (2.20)

and

LΦ = ∂µΦ†∂µΦ− µ2Φ†Φ− λ(Φ†Φ)2 (2.21)

The Lagrangian LΦ, is invariant locally under SU(2)L

⊗
U(1)Y when the covariant
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derivative DΦ
µ is substituted for ∂µ,

DΦ
µ = ∂µ −

ig

2
σiW i

µ −
ig′
2
Bµ (2.22)

The potential term,

V = µ2Φ†Φ + λ(Φ†Φ)2 (2.23)

is chosen to allow the symmetry to be spontaneously broken from SU(2)L

⊗
U(1)Y to U(1)em

Spontaneous symmetry breaking refers to the arbitrary selection of one particular minima

for the potential. Expansion of the potential term gives:

V = µ2[(ϕ+)2 + (ϕ0)2] + λ[(ϕ+)2 + (ϕ0)2]2 (2.24)

which is minimized for µ2 < 0 whenever,

[(ϕ+)2 + (ϕ0)2] = −µ
2

2λ
≡ v2

2
(2.25)

Choosing a particular pair of minimizing values, say ϕ+ = 0 and ϕ0 = v√
2

gives,

Φ0 =
1√
2

 0

v

 (2.26)

which is the vacuum expectation of the Higgs field.

The next step is to express LΦ in terms of a state, Φ∼
0 that differs slightly from Φ0.

Φ∼
0 =

1√
2

 0

v + h

 (2.27)

Only displaying terms relevant to the current discussion, the Lagrangian LΦ in terms of
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Φ∼
0 is:

LΦ =
1

2
∂µ(0, v + h)∂µ

 0

v + h

− V (Φ†Φ)

= ....+
1

2
(∂µh)(∂

µh)− 1

2
(−2µ2)h2 + ..... (2.28)

The term (−2µ2)h2, is the mass term for a scalar boson with mass,

mh =
√
−2µ2 (2.29)

which is the Higgs boson.

In order to give mass to the correct gauge bosons, the lagrangian, LΦ is expressed in

terms of Φ∼
0 and DΦ

µ . Then the non-physical fields are replaced by the physical fields as in

Eqs. 2.18 and 2.19. This results in a lagrangian with terms:

LΦ = ........+
g2v2

4
W+

µ W
−µ +

g2v2

8(cos2 θw)
Z0

µZ
0µ + ...... (2.30)

where the masses of the gauge bosons W± and Z0 are identified as,

MW =
gv

2
and MZ =

gv

2(cos θw)
(2.31)

and no such term exists for the photon field, which remains massless. In a similar manner,

fermion masses can be introduced by the addition of a term to the lagrangian which includes

Yukawa couplings of the leptons with the Higgs field Φ.

Employing gauge invariance, spontaneous symmetry breaking and the Higgs

mechanism, results in four mediator bosons, each with the correct mass. The byproduct of

these procedures is the Higgs boson, whose existence remains unverified.
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2.2 The SM Higgs boson

This subsection contains a brief description of basic properties of the Higgs boson, with

the focus primarily on behavior at hadronic colliders. Behavior of the Higgs at electron-

positron colliders is discussed elsewhere [22].

2.2.1 Production Mechanisms

At pp̄ colliders such as the Tevatron, there are four primary Higgs boson production

processes: gluon-gluon fusion, associated production with a W± or Z0, associated production

with bb̄ or tt̄ and vector boson fusion. Feynman diagrams for these processes are shown in

Fig. 2.4, and cross-sections for Higgs production are shown in Fig. 2.5 (a).

Gluon-gluon fusion is the most important production mechanism. While gluons do not

couple directly to the Higgs boson, gluon-gluon fusion does occur through an intermediate

quark loop. Since Higgs couplings to fermions are proportional to the fermion’s mass, gluon-

gluon fusion usually occurs through a top quark loop as shown in Fig. 2.4(a). Despite

occurring at a higher order, gluon-gluon fusion is the dominant production mechanism at

the Tevatron.

Feynman diagrams for associated Higgs production are shown in Figs. 2.4(b) and 2.4(c).

Despite smaller cross-sections than gluon-gluon fusion, the decay of the associated particle

can result in easily distinguished final states containing, for example, charged leptons or

missing energy (from neutrinos) produced in the decay of W± or Z0. These decay products

are used to distinguish events containing a Higgs boson from multi-jet QCD events.

Vector boson fusion consists of a quark and antiquark each coupling to a vector boson

which then annihilate to produces a Higgs boson. The Feynman diagram in Fig. 2.4(d) is an

example of vector boson fusion. Searches for Higgs production through vector boson fusion

look for the characteristic presence of two forward energetic jets [23].
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Figure 2.4: The four primary Higgs production mechanisms. They are (a) gluon-gluon fusion,
(b) associated production with a W , (c) associated production with a tt̄ pair, and (d) vector
boson fusion.
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Figure 2.5: Higgs production cross-sections in picobarns (a) and decay branching ratios
(b). Cross-sections and branching ratios are shown for various Higgs boson masses. Taken
from [24].
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2.2.2 Decay Modes

Figure 2.5(b), shows the branching ratio of the Higgs boson to various final states as a

function of Higgs mass. A low mass Higgs boson, Mh < 135 GeV/c2, decays predominantly

to a pair of low mass fermions, H → ff̄ . As mentioned in Sub-Section 2.2.1, the Higgs

coupling to fermions is proportional to the fermion’s mass. Since top quark pairs are too

massive for a Higgs mass in this range, the dominant decay is H → bb̄, with the next most

common fermion – anti-fermion mode, H → ττ , an order of magnitude smaller.

For a Higgs of intermediate mass, 120 < Mh < 135 GeV/c2, the channelH → gg becomes

significant, having the third largest branching ratio for this Higgs mass range.

For a larger Higgs mass, Mh > 135 GeV/c2, the primary decay mode is H → W+W−

with a branching ratio of 0.6 to 0.9. The decay channel H → Z0Z0 has a branching ratio of

about 0.3 in this range.

2.2.3 The SM Higgs Mass

Equation 2.29 relates the mass of the Higgs boson to the factor µ, which is an arbitrary

parameter whose value is unknown. Nonetheless, theoretical bounds on the mass of the

Higgs have been calculated by excluding values of mh for which the standard model becomes

non-perturbative. A lower bound on mh can be obtained by considering the instability of

the Higgs potential when quantum loop corrections are included [25]. An upper bound can

be calculated by considering energy scales for which the coupling factor λ tends to ∞ [26].

Figure 2.6 shows the allowed range for the Higgs mass as a function of Λ, the energy scale

at which the standard model breaks down.

The LEP experiments provide a lower limit on the Higgs mass. The combined Higgs

lower mass limit in direct searches by the four experiments is Mh > 114.4 GeV/c2 at the

95% confidence level [27]. As of March 2009, the two Tevatron experiments CDF and D0,

have (in combination) excluded the range 160 to 170 GeV/c2 at the 95% confidence level.

Details of the LEP and Tevatron exclusions will be presented in Chaper 3.
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The values of SM parameters such as the masses of the W and top quark are sensitive to

the mass of the Higgs boson. Precision measurements of various electroweak parameters by

the LEP, SLD, CDF, and D0 experiments provide indirect experimental constraints on the

value of MH . Figure 2.7 shows the indirect (from LEP-1 and SLD) and direct (from LEP-2,

CDF, and D0) 68% CL contours [7] on the masses of the W and top quark (MW and Mt

respectively), the values or which are modified by radiative corrections from Higgs loops. In

the SM, knowing the masses for two of the three particles, W , H, or t, determines the mass

of the third. This relationship is represented by the solid lines in Fig. 2.7. The intersection

of the 68% CL contour on MW and Mt favors a Higgs mass near the Mh > 114.4 GeV/c2

LEP direct exclusion bound.

Figure 2.8 shows the constraint on MH derived from a SM fit to experimental

measurements of electroweak parameters. The minimum of the ∆χ2 curve corresponds to

the preferred value of MH (87+35
−26 GeV/c2 at 68%CL). While this value does fall below the

LEP exclusion bound, the experimental uncertainty of +35 and -26 GeV (at 68%CL)

means that the two results are compatible. When the LEP direct search results and the

precision electroweak measurements are combined, the 95% CL upper limit on the Higgs

mass is 186 GeV/c2 [7].
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Figure 2.6: Upper and lower bounds on the Higgs mass. Bounds are plotted as a function
of energy scale Λ. Taken from [24].
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Figure 2.7: Comparison of indirect (dashed contour) and direct (solid contour) constraints
on MW and Mt. The SM relationship for the masses as a function of the Higgs mass is also
shown, with the ∆α arrow representing the shift in this relationship as strong coupling is
varied by one standard deviation. Figure taken from [7].
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Chapter 3: Experimental Searches for

the SM Higgs

The following sections outline efforts to observe the SM Higgs in searches performed by

the LEP and Tevatron experiments. The chapter closes with a discussion of the ZH →

`+`−bb̄ search at the Tevatron.

3.1 LEP Searches

Each of the four LEP experiments (ALEPH, DELPHI, L3 and OPAL) recorded

approximately 700 pb−1 of e+e− collisions at center–of–mass energies ranging from 189 to

209 GeV. The primary Higgs production mechanism at LEP was e+e− → ZH [28]. The

LEP searches focused on events with one of the following final states:

• (H → bb̄)(Z → qq̄)

• (H → bb̄)(Z → νν̄)

• (H → bb̄)(Z → `+`−) where ` =electron or muon

• (H → τ+τ−)(Z → qq̄).

The main background processes at LEP were two-photon exchange, and e+e− → fermion

pairs, ZZ, or W+W−.

The individual data samples were examined for the presence of a SM Higgs

signal [29, 30, 31, 32] with the ALEPH experiment reporting an excess in the data over the

SM background expectation with a significance of approximately 3σ. By convention, a 3σ

significance constitutes ’evidence’ while 5σ significance represents ’discovery’. The ALEPH

excess was consistent with a Higgs signal where the Higgs mass is roughly 115 GeV/c2. The
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L3 and OPAL data samples were consistent with SM backgrounds, while DELPHI observed

a slight deficit of events.

Once LEP operations ceased in 2000, the data recorded by the four experiments, totaling

2461 pb−1, was simultaneously examined for the presence of a SM Higgs signal [9]. Analysis

of the combined LEP dataset employed a modified frequentist approach [33], where the

combined dataset was compared to two Monte-Carlo simulated sets, each corresponding

to one of two hypothesis: the “(b)-hypothesis” containing only background events, and

the “(s+b)-hypothesis” which contained a standard model Higgs of some assumed mass in

addition to background. The quantity−2 ln(Q), whereQ is the ratio of the binned likelihoods

for each hypothesis,

Q =
Ls+b

Lb

(3.1)

was used as the test statistic. Figure 3.1 shows the test statistic plotted against the Higgs

mass, where the negative values of the observed −2 ln(Q) correspond to mass values where

the (s+b)-hypothesis is slightly favored. Although the (s+b)-hypothesis is favored for Higgs

masses in the range of 114 to 120GeV/ c2, the departure from the background only hypothesis

is statistically insignificant. The final LEP lower bound on the Higgs mass, obtained from

the combined dataset, was Mh > 114.4 GeV/ c2 at the 95% confidence level.

3.2 Tevatron Searches

Standard model Higgs searches by the CDF and D0 collaborations fall into two categories

based on the decay mode of the Higgs boson: low mass searches where MH ≤ 135 GeV/c2,

and high mass searches, MH > 135 GeV/c2. For MH ≤ 135 GeV/c2, the main search modes

at the Tevatron are associated production of the Higgs with a vector boson, with the Higgs

decaying to bb̄, and the vector boson decaying leptonically:

• WH → `±νbb̄
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Figure 3.1: Behavior of −2 ln(Q) for combined LEP data. The green and yellow bands
represent the 68% and 95% probability bands about the median background expectation.
Taken from [9].
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• ZH → ννbb̄

• ZH → `+`−bb̄

Tevatron searches in the above modes attempt to identifying Higgs bosons decaying to

a high transverse momentum b quark and b anti-quark pair. The hadronization of a high

momentum quark produces a spray of secondary hadrons called a “jet”. Tevatron low mass

searches rely on algorithms designed to distinguish b quark jets from the jets produced when

non-b quarks or gluons hadronize. Several of these algorithms are discussed in Chapter 7.

The low mass modes listed above are associated production modes where the Higgs is

produced with a W/Z partner. Although the Higgs is more likely to be produced without a

partner at the Tevatron by the gluon fusion process gg → H, the detector signature of that

process is difficult to distinguish from QCD multi-jet events. In associated Higgs production

the decays of the W or Z to charged lepton(s) and/or neutrinos produce a final state that

is distinguishable from multi-jet backgrounds.

Figure 3.2 shows the upper limits (as of March 2009) on SM Higgs production

cross-sections × branching ratios obtained from a combination of searches performed by

the Tevatron (CDF and D0) collaborations. The individual searches were performed in

data samples of integrated luminosity between 0.9 and 4.2 fb−1. The Tevatron experiments

set a 95% CL upper limit of 2.5 times the standard model’s values for the cross-sections ×

branching ratios for a Higgs with MH = 115 GeV/c2.

In the high mass (MH > 135 GeV/c2) region, the Tevatron is most sensitive to a SM

Higgs in the production/decay mode gg → H → WW → `ν`ν, with additional sensitivity

from (Z/W ) associated Higgs production where the Higgs decays to a pair of W bosons

(H → W+W−). The combination of D0 and CDF results excludes the existence of a SM

Higgs boson with 160 ≤MH ≤ 170 GeV/ c2 at the 95% confidence level.
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on SM Higgs production cross-sections × branching ratios for Higgs masses between 100 and
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3.3 Tevatron Search for ZH → `+`−bb̄

The detector signature of a ZH → `+`−bb̄ event at the Tevatron is two energetic b jets

and two charged leptons whose combined mass is near that of the Z. The ZH → `+`−bb̄

Higgs search channel is distinguished from other Tevatron modes by the lack of neutrinos in

the final state. The lack of neutrinos means that both the H → bb̄ and Z → `+`− decays

can be reconstructed without the need to infer the presence of particles from missing energy.

This feature provides a strong control on background processes that compensates for the low

production cross section × Z → `+`− branching fraction.

Leading order Feynman diagrams for ZH → `+`−bb̄ and important background processes

to the ZH → `+`−bb̄ search are shown in Fig. 3.3. The primary standard model background

to ZH → `+`−bb̄ is Z + bb̄ production. This process shares a final state that while similar

to ZH → `+`−bb̄ is distinguished by the lack of a resonance in the distribution of the

reconstructed dijet mass as shown in Fig. 3.4. The next largest background to Tevatron

ZH → `+`−bb̄ searches is tt̄ production where each top decays to a W and a b quark. The

detector signature of a tt̄ event is similar to that of ZH → `+`−bb̄ in that it has two b jets

and two charged leptons (from W → `ν). However, the two neutrinos from the W decays

appear as significant missing transverse energy; a feature that is not present in ZH → `+`−bb̄

events as seen in Fig. 3.5.

Previous Tevatron searches for the ZH → `+`−bb̄ process are described in [35, 36, 37].

The general strategy employed in these searches is to select a sample of events with an

identified Z → e+e− or Z → µ+µ− decay, and two jets in the event. Background processes

with non-b jets are reduced by requiring at least one of the two jets to be identified as a

b quark jet. The sample of events with a Z candidate and at least two b jets is compared

to the SM background for any excess consistent with a ZH signal. To date no experiment

has observed an excess over background processes consistent with a Higgs signal. The most

stringent 95% CL upper limit on σZH ×BR(H → bb̄) obtained in [36] is 8.2× the standard

model values for a Higgs mass of 115 GeV/c2.
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Figure 3.3: Leading order Feynman diagrams for ZH → `+`−bb̄ [a], Z + bb̄ [b], tt̄ [c], and
Diboson ZZ production [d]. Z + bb̄ is the dominant background to Tevatron ZH → `+`−bb̄
searches.
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Figure 3.4: Comparison of the reconstructed bb̄ mass in ZH → `+`−bb̄ (red) and Z + bb̄
(black) simulated events. The simulation uses a Higgs mass of 120 GeV/c2.

Figure 3.5: Comparison of the magnitude of the missing transverse energy in ZH → `+`−bb̄
(red) and tt̄ (black) simulated events. The simulation uses a Higgs mass of 120 GeV/c2.
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Chapter 4: The Tevatron and CDF II

The data analyzed in this thesis was recorded by the Collider Detector at Fermilab

(CDF II) and represents approximately seven years of Tevatron collisons. The following

three sections (4.1,4.2,4.3) describe the main features of the Fermi National Accelerator

Laboratory (FNAL) accelerator complex, the Tevatron beam, and the components of the

CDF II detector most relevant to this analysis.

4.1 The Tevatron and the FNAL Accelerator Complex

The Tevatron [38] is a pp̄ collider located at FNAL in Batavia, IL. An aerial view of the

Tevatron is shown in Figure 4.1. Since 2001 (the phase of operation known as Run II), the

Tevatron has operated at a center of mass energy of 1.96 TeV, making it the world’s highest

energy particle collider. The Tevatron held this distinction until the Large Hadron Collider

(LHC) became operational in late 2009.

To reach a collision energy of 1.96 TeV, a series of accelerators is employed to produce

beams of protons and antiprotons with an energy of 980 GeV for collisions at either of the

Tevatron’s two interaction regions (labeled B0 and D0 in Fig. 4.2). The CDF II detector is

located at the B0 interaction point, while D0 (as the name implies) is situated at the D0

point.

Figure 4.2 shows the various accelerators in the Tevatron accelerator chain. The

preaccelerator is the first stage in the chain, were negative hydrogen ions, (H−), are

accelerated by either of two Cockroft-Walton accelerators to 750 keV. The ions are then

injected into a linear accelerator (Linac) which raises the kinetic energy of the H− ions to

400 MeV. The energy increase in the Linac is achieved through the use of Radio Frequency

Cavities (RFC) [39]. As it travels through the “Linac Buncher” the continuous beam of
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H− ions is separated into 201.24 MHz bunches.

These 400 MeV H− ions are then directed onto a thin carbon foil. As they pass through

the carbon foil, two electrons are stripped from each ion leaving bare protons. The protons

enter the “booster” synchrotron. Unlike the linac where varying drift tube lengths ensure

that particles are shielded from the decelerating phase of electric field, synchrotrons rely on

precise synchronization of the field to the beam momentum to achieve acceleration. In the

booster, the protons are accelerated to an energy of 8 GeV.

After acceleration in the booster, the protons are transferred to another synchrotron

called the main injector, where they are accelerated to an energy of either 120 or 150 GeV.

From the main injector, 150 GeV protons intended for collision enter the Tevatron, while

others are accelerated to 120 GeV before being directed onto a nickel source to produce

antiprotons [40]. Approximately one antiproton is recovered for every 50, 000 proton-nickel

target collisions. Through various improvements to the FNAL accelerator chain (including

the addition of the main injector and the Recycler p̄ storage ring) the antiproton production

rate has increased from 6× 1010 to 2× 1011 p̄/hr since 1986.

After antiprotons are produced, they enter the antiproton ring which consists of the

Debuncher and the Accumulator. The Debuncher is a rounded triangular synchrotron which

serves to reduce the momentum spread of the antiprotons, while at the same time “de-

bunching” them— that is increasing their physical separation. The antiprotons leave the

Debuncher and enter the Accumulator, another triangular-shaped synchrotron, where they

are stored until enough are present for collisions in the Tevatron. When enough protons and

antiprotons are available, (approximately 6.5 × 1012p and 4.3 × 1011p̄), they are injected

into the Tevatron from the main injector at 150 GeV. There, the protons and antiprotons

are accelerated to 980 GeV, as they travel in opposite directions around the nearly four mile

circumference of the Tevatron. The protons and antiprotons are grouped into 36 bunches

each, and directed towards the two collision points where the CDF and D0 detectors are

located. The beams cross every 396 ns.
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4.2 Tevatron Luminosity

The Tevatron is characterized by the instantaneous luminosity L which is defined [38] as:

L =
f × n×Np ×Np̄

A
(4.1)

where f is the beam revolution frequency, n is the number of proton and antiproton bunches,

Np (Np̄) is the number of protons (antiprotons) in each bunch, and A is a factor which

depends on the width of the gaussian beam shapes and a form factor dependent on the

bunch size. Average values for these quantities are listed in Table 4.1.

The average instantaneous luminosity at the Tevatron in Run II is approximately 1.7×

1032 cm−2s−1 with peak values of 3.2× 1032 cm−2s−1.

The expected number of ZH events is given by the product of the associated production

cross-section (σZH) and the integrated luminosity L =
∫
L dt. As of October 2009 the

Tevatron has delivered an integrated luminosity of nearly 6 fb−1 to the CDF experiment,

and with 4.1 fb−1 analyzed in this thesis, the expected number of (inclusive) ZH events

produced in the CDF detector is between 690 and 170 events, depending on the assumed

Higgs mass. With SM branching fractions for H → bb̄ between 0.81 and 0.18 and a branching

fraction of 0.066 for Z → `+`− (` = e, µ), the SM prediction for the number of ZH → `+`−bb̄

events falls between 37 and 2 events for Higgs masses between 100 and 150 GeV/c2.

4.3 The CDF II Detector

The Collider Detector at Fermilab II (CDFII) [41] is a general purpose pp̄ detector

consisting of tracking systems, calorimeters and muon detectors, designed for the study of

pp̄ collisions at the Tevatron. An isometric view of the CDFII detector with the major

components labeled is shown in Fig. 4.3. The following subsections present a brief

description of the CDFII detector components, as well as the trigger and data acquisition
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Table 4.1: Average values for Tevatron beam parameters in Run II.

Quantity Tevatron Run II Value

Revolution Frequency (f) ∼ 47 kHz

Number of Bunches (n) 36

Number of Protons per Bunch (Np) ∼ 2.7× 1011

Number of Antiprotons per Bunch (Np̄) ∼ 7× 1010

A 1.838× 10−4 cm2

Instantaneous Luminosity (L) 1.7× 1032 cm−2s−1

Figure 4.1: Aerial view of the FNAL accelerator complex. The Tevatron (yellow highlight)
is the large circular (radius of 1 km) object in the center of the photo. The main injector
(orange highlight) is also shown.
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Figure 4.2: The Tevatron accelerator chain. Figure from [39].
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Figure 4.3: Isometric view of the CDF II Detector with silicon detectors, Central Outer
Tracker (COT), solenoid, calorimeter and muon detector components labeled. Image
from [42] with modification.

(DAQ) systems.

4.3.1 The CDF Coordinate System

The CDF II detector is a roughly cylindrical device built around the Tevatron beampipe,

measuring approximately 40 feet in length, width, and height and weighing roughly 100

tons [43]. We use a cylindrical coordinate system, as depicted in Fig. 4.4. Protons travel

eastward through CDF in the +z direction while anti-protons travel westward in the −z

direction. Beam collisions occur near z = 0, at the origin of the detector coordinate system.

The radial distance from the z axis is denoted by r, while the angle θ measures the polar angle

from the beamline and φ is the azimuthal angle around the beamline. The psuedorapidity
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(η) defined as :

η = − ln

{
tan

θ

2

}
(4.2)

is used to describe polar angles. Objects perpendicular to the beamline have

psuedorapidity zero, while psuedorapidity approaches positive (negative) infinity along the

+z (−z) direction. The central region of the CDF coordinate space is defined by |η| ≤ 1.1

while the forward (also called plug) region covers values of 1.1 ≤ |η| ≤ 3.6.

The separation between two points in the η−φ plane is given by the quantity ∆R which

is defined as

∆R =
√

∆η2 + ∆φ2. (4.3)

In collisions between composite objects (p and p̄ for example) the initial state momentum

is known only in the plane transverse to the beampipe (i.e. zero GeV/c). The consequence

of this is that conservation of momentum and energy can only be applied in the transverse

plane. We define the transverse momentum (pT ) of an object with momentum ~p and polar

angle θ as

pT = |~p| × sin(θ). (4.4)

Similarly, the transverse energy (ET ) of an object with energy E and polar angle θ is given

by

ET = E × sin(θ). (4.5)

The energy imbalance in the transverse plane is denoted as the missing transverse energy

( ~6ET ) with

6ET = | ~6ET |. (4.6)

and where ~6ET is defined as :

~6ET = −
∑

i

(ET )i × n̂i (4.7)

were i denotes the calorimeter tower (discussed in Chapter 5) number and n̂i is a unit vector
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Figure 4.4: The CDF Coordinate System.

pointing out radially from the origin to the ith calorimeter tower.

4.3.2 The Cherenkov Luminosity Counter

The instantaneous luminosity (L) can be expressed as

L =
µ× fbc

σin

, (4.8)

where µ is the average number of pp̄ interactions per bunch crossing, fbc is the Tevatron

bunch crossing frequency (1.515× 107 Hz) and σin (approx. 60 mb [44]) is the total inelastic

pp̄ interaction cross-section. The purpose of the CDF Cherenkov Luminosity Counter (CLC)

is to obtain an accurate measurement of µ.

The CLC consists of two Cherenkov light detectors located at the opposite ends (±z) of

the CDF detector’s plug regions. Each CLC module consists of 48 isobutane filled Cherenkov
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counters surrounding the beampipe and providing coverage for the space 3.7 < |η| < 4.7.

A photomultiplier tube (PMT) at the end of each counter collects the Cherenkov radiation

produced as charged particles travel through the isobutane gas. A schematic view of the

CLC is presented in Fig. 4.5.

The µ parameter is measured under the assumption of Poisson statistics by recording the

fraction of bunch crossings with no significant Cherenkov light in the CLC modules. Since

the Poisson probability for such a “no hit” event is given by

Pno hit = e−µ, (4.9)

the value of µ can be obtained. The value of µ for CDF in Run II is about 6.

The value µ is then combined with experimental measurements of the CLC detector

efficiency [45, 46] to produce measurements of the instantaneous luminosity.

4.3.3 The Silicon Detectors

In order to provide accurate track reconstruction, and to distinguish between charged

particles coming from the primary pp̄ interaction vertex and those from the decays of

secondary particles, CDF contains a high resolution silicon tracking detector [47, 48, 49]

close to the beampipe. The impact of the silicon detector system on CDF low mass Higgs

searches cannot be overstated; without the ability provided by the high resolution tracking

of Si detectors to distinguish between particles from secondary B meson decays and

particles coming from the primary vertex, backgrounds to ZH → `+`−bb̄ would be

approximately 35 times larger.

A silicon detector is created from doped silicon strips, each with a bias voltage applied.

A charged particle traveling through a particular strip produces a current; by combining

the current readings from multiple (376 modules in the CDF Si detector) silicon strips the

particle’s path through the silicon detector can be reconstructed. The tracking resolution of
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Figure 4.5: Schematic view of the CDF CLC. Figure taken from [46].
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Figure 4.6: Axial (left) and r− z (right) views of the CDFII Silicon Detectors. Figure taken
from [50].

the CDF silicon detector is on the order of 10µm, with a track impact parameter resolution

of approximately 40µm.

The silicon detector has three components, Layer 00 (L00), the Silicon Vertex Detector

(SVX) and the Intermediate Silicon Layer (ISL). Axial and r−z views of the silicon detector

are shown in Fig. 4.6. L00 is located directly outside the beampipe, at roughly r = 1.6 cm

and provides tracking coverage for |η| < 4.0. L00 is a single-sided silicon microstrip detector

designed for making precision track measurements close to the beampipe. The SVX is a

high-precision tracking and secondary vertex detector, consisting of five layers of double-

sided silicon microstrip detectors, located from r = 2.1 to 17.3 cm and covering |η| < 2.0.

The ISL is located outside of the SVX and is a double-sided silicon microstrip detector

designed to provide track linking between the SVX and the CDF Central Outer Tracker.
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4.3.4 The Central Outer Tracker

The Central Outer Tracker (COT) [51], is a cylindrical open-cell drift chamber using a

50/50 mix of argon-ethane gas. The COT extends from r = 40 to 137 cm and provides

tracking for |η| < 1.0. The COT contains 30, 240 sense wires organized into 96 layers in r,

which in turn are grouped into eight “superlayers”. Each superlayer is divided in φ forming

2520 “supercells” which contain both sense and field wires.

A voltage maintained on the field wires accelerates electrons, produced when charged

particles travel through the gas, towards the sense wires. The sense wires span the length

of the COT (approximately 310 cm in z), and register the current produced when electrons

arrive at the wires as “hits”. The r and φ information from multiple supercell hits can be

fit to a helix reconstructing the path of a charged particle through the COT.

The COT is surrounded by a solenoidal magnet which generates a 1.4 Tesla magnetic

field. The magnetic field of the NbTi superconducting solenoid deflects the path of charged

particles in the COT and silicon systems, allowing for charge sign determination and

momentum measurement.

The COT has a hit position resolution of roughly 140µm in the r − φ plane and a

transverse momentum resolution (σ(pT )/(pT )2) of 0.0015 (GeV/c)−1 [52]. The COT is

depicted in Fig. 4.7.

4.3.5 The Calorimeters

CDF calorimeters [53, 54, 55] are constructed from alternating layers of absorption and

detection (scintillator) materials. A particle interacting with the absorption material will

produce a shower of secondary particles which produce light as they travel in the scintillator

layer. The amount of light produced is proportional to the number of shower particles which

depends on the energy of the original particle; from measurements of the light yield we can

estimate the original particle’s energy.

CDF features a combination of electromagnetic and hadronic calorimeter systems
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Figure 4.7: End view of one sector of the COT. Dimensions are in cm. Figure taken from [51].

designed to measure particle energies. Hadronic calorimeters, consisting of alternating

layers of scintillator and iron absorption material, measure the energy of hadronic showers,

while electromagnetic calorimeters, consisting of scintillators with lead as the absorption

material, measure the energy of electromagnetic showers.

The main calorimeter systems are :

• central electromagnetic calorimeter (CEM)

• plug electromagnetic calorimeter (PEM)

• central hadronic calorimeter (CHA)

• plug hadronic calorimeter (PHA)

• endwall hadronic calorimeter (WHA)



43

Table 4.2 presents a summary of the main features of the CDF calorimeter systems which

are depicted in Fig. 4.8.

Table 4.2: Location and energy resolution of the CDF calorimeter systems. The quoted
resolutions are from [52] and references therein.

Calorimeter Location Energy Resolution

CEM |η| < 1.1, outside solenoid 13.5%/
√
ET ⊕ 2%

CHA |η| < 0.9, outside CEM 75%/
√
ET ⊕ 3%

PEM 1.1 < |η| < 3.6, outside COT end planes 16%/
√
E ⊕ 2%

PHA 1.2 < |η| < 3.6, outside PEM 74%/
√
E ⊕ 4%

WHA 0.8 < |η| < 1.2 75%/
√
E ⊕ 4%

4.3.6 The Muon Detectors

While electrons, photons, and hadronic particles are expected to be absorbed in the

calorimeter materials, muons do not lose a significant amount of energy to bremsstrahlung

and can reach the outer radii of the CDF detector. In order to detect the presence of these

particles, CDF has several muon detectors positioned outside of the hadronic calorimeters.

The CDF muon detectors [57] are wire chambers operating in “proportional” mode;

meaning that a strong electric field is maintained throughout the detector. This causes the

ionization electrons produced as a muon passes through the chamber, to themselves

become ionizing. This cascade of secondary particles are collected on sense wires and

produces a signal whose strength is proportional to the energy of the original ionization.

Combined with drift time information, the signals produced as a muon passes through

multiple muon detector chambers can be combined to form a small track segment called a

“stub”. When matched to track information from the silicon detectors and the COT, the

path of the muon from the production point to the muon detector can be reconstructed.

The primary CDF muon systems are the :
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Figure 4.8: Elevation view of one half of the CDF II detector with the calorimeter systems
labeled. Figure taken from [56].
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• central muon chambers (CMU)

• central muon upgrade (CMP)

• central muon extension (CMX)

Muons with a transverse momentum as low as 1.4 GeV/c can be detected in the CMU

detectors which are located behind the CHA detectors and cover the region |η| < 0.6. In

order to reduce the background from surviving hadronic particles, CMU signals are matched

to stubs in the CMP. The CMP is situated behind an additional layer of steel shielding,

designed to limit the number of hadronic particles surviving to the CMP. Due to the extra

shielding, hadronic particles are unlikely to produce CMU signals that are matched to a

corresponding signal in the CMP. Objects with matching signals in the CMU and CMP are

reconstructed as ’CMUP’ muons. The |η| range from 0.6 to 1.0 is covered by the CMX

chambers.

4.3.7 The Trigger System

The Tevatron bunch crossing rate is approximately 1.7 MHz, while event data can be

stored at a rate of about 100 Hz. Therefore the vast majority of events cannot be recorded.

In order to ensure the efficient selection of events significant for physics studies (i.e. those

with energetic particles, displaced vertices, or large 6ET ), CDFII employs a three-level trigger

system. A schematic of the data flow is depicted in Fig. 4.9.

At level one, hardware triggers use signals from the calorimeters, COT and muon

detectors, to decide weather an event should be considered further. Decision times at level

one are about 5 µs with an acceptance rate near 30 kHz. Level two combines software and

hardware triggers, with a typical decision time of about 20 µs. Information from additional

systems is available at level two, such as data from the SVX. Level two passes events at

rates on the order of a few hundred Hz. Event data passing the level two trigger is sent to

data acquisition storage buffers, and then transferred to a level three decision farm node
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for complete event reconstruction. Events meeting the requirements of the level three

trigger are accepted at a rate near 100 Hz for storage.
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Figure 4.9: Depiction of the flow of CDF II data through the 3-level trigger system to mass
storage.
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Chapter 5: Object Reconstruction

The combined readout of the CDF detector’s subcomponents ( roughly 250 kbytes of

data per event ) is used to form tracks, calorimeter energy clusters, and muon detector

signals which in turn form physics objects such as electrons, muons, and jets. The following

sections will provide a brief description of the track, electron, muon, 6ET and jet reconstruction

algorithms used at CDF.

5.1 Track Reconstruction

The momentum, p, of a charged particle traveling through a constant magnetic field is

proportional to the radius of curvature of the particle’s path :

p = 0.3×B ×R (5.1)

where p is in units of GeV/c, B is the magnitude of the magnetic field in Tesla, and R is

the radius of curvature in meters. To measure R, the path of a charged particle through the

CDF tracking detectors must be reconstructed. CDF employs several algorithms for track

reconstruction depending on which components of the detector a particle travels through;

due to the cylindrical geometry of the CDF detector, a charged particle traveling through

the detector with |η| ≤ 1.1 (central) will pass through more layers of tracking detector than

a forward particle (|η| > 1.1).

Central tracks are reconstructed using the outside-in (OI) [58] track reconstruction

algorithm. An OI track is formed by identifying a “seed” (i.e. starting) hit in an outer

COT layer. Starting from the seed hit, additional COT hits are added to form a track

moving inwards toward the pp̄ interaction point. The track reconstructed in the COT is

then required to match a track reconstructed separately from silicon detector signals. The
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OI algorithm is used to reconstruct tracks for particles that pass through at least half of

the COT in the r direction. For such tracks, the COT tracking efficiency (with the OI

algorithm) has been measured to be close to one (98.62 ± 0.12% for tracks with

pT ≥ 10 GeV/c) [59] in a sample of W candidates formed from calorimeter based W → eν

reconstruction. Events in this W sample are required to also contain a silicon track. The

efficiency is measured as the fraction of the events in which the W is linked to the silicon

track by an OI track. Measurements of the efficiency in simulated W → eν events find an

efficiency of 97.2 ± 0.2% for tracks with pT ≥ 10 GeV/c [60]. The slight difference in the

efficiencies measured in data and in simulated events is attributed to Bremsstrahlung

radiation. In the simulation, the likelihood that an electron which emits a photon has a

silicon track that correctly extrapolates to the calorimeter is slightly overestimated.

Therefore, the efficiency measurement in the simulation includes Bremsstrahlung events

that are less likely to enter the efficiency measurement in data.

In order to reconstruct the path of charged particles at |η| > 1.1 an inside-out (IO) [61]

algorithm is employed. In this algorithm, each silicon track is propagated outward in r

towards the exterior of the COT forming a potential path. Next, each layer of the COT is

examined for hits close to this path and (if hits are present) a χ2 fit is performed to compute

the likely track parameters. IO tracking is used in the reconstruction of muon candidates at

η > 1.0 and is greater than 95% efficient for high pT tracks.

A third algorithm is applied to reconstruct the tracks of electron candidates which enter

the forward calorimeter systems. The PHOENIX [62] algorithm begins by locating both an

energy cluster in the calorimeter and a silicon track. The silicon track is used to identify

the particle’s point of origin. All detector signals along the probable path between the point

of origin and the calorimeter deposit are fit to two likely trajectories; one for each sign of

charge (±). The trajectory formed under the charge hypothesis which best fits the detector

signals is taken as the particle’s track. The PHOENIX track reconstruction algorithm has

an efficiency of approximately 92%, but is limited by a significant (approx. 30% for |η| > 2)
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charge misidentification rate.

In addition to the offline, i.e. post-trigger selection, track reconstruction algorithms

presented above, the CDF trigger system utilizes the eXtremely Fast Tracker (XFT) [63]

system for fast, online track reconstruction. The XFT processor forms tracks from COT

hits and performs track extrapolations to calorimeter or muon detector signals; forming

electron or muon candidates used in online trigger selection. In addition to forming trigger

objects, cuts on XFT track parameters ( such as the number of hits, XFT fit χ2, etc.) are

also utilized in analysis level object selection (for example requiring a minimum number of

XFT identified COT hits for a muon candidate).

5.2 Electrons

Electrons are formed by matching a calorimeter energy deposit (called a “cluster”) to

either an OI or PHOENIX track. The CDF calorimeter systems are divided in η and φ into

478 CEM, 384 CHA, 288 WHA, 960 PEM, and 864 PHA regions known as “towers”. The

energy content of each tower is read out by a pair of PMTs, each responsible for a particular

range of the tower in φ.

Electron energy clusters [64] are formed around “seed” towers with an electromagnetic

energy (EM) of at least 2 GeV. Seed towers are organized in descending EM ET , and

beginning with the highest ET tower, clusters are formed by combining seeds with all

neighboring towers with EM energy greater than 100 MeV. A seed tower adjacent to

another seed tower of greater energy is removed from the list of seeds. Towers that

neighbor more than one seed tower are clustered with the seed with higher energy.

Once a cluster is formed, it is required to meet the following criteria :

• EM ET ≥ 5 GeV and

• the ratio of Hadronic (Had) energy to EM energy is less than or equal to 0.125 or

• EM ET ≥ 100 GeV
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The towers assigned to clusters which fail these requirements are released and can be used

to construct alternate clusters around seeds of lower energy.

Electron candidates are characterized by the following quantities :

• ET - The transverse energy of the electron candidate is measured from the combined

energies of calorimeter deposits in up to two adjacent calorimeter towers.

• pT - The transverse momentum of the reconstructed track.

• fiduciality - Due to the segmented structure of the CDF calorimeter, there are

uninstrumented regions every 15◦ in φ and at η values of 0 and ±1.1 (as indicated in

Fig. 5.1). Objects formed from tracks that point to these regions are assigned a

fiduciality value of zero.

• Region - This quantity indicates the location of the calorimeter deposit in |η|; central

clusters are assigned a Region value of 0 while forward objects have a value of 1.

• HadEm - The ratio of the amount of energy deposited by the electron candidate in the

hadronic calorimeter to that deposited in the electromagnetic calorimeter. Electrons

have small values of HadEm.

• conversion - Electrons produced in photon conversions are identified by requiring the

presence of a second oppositely charged track with low separation between track origins

and low combined mass [65]. Electron candidates consistent with coming from γ →

e+e− conversions are assigned a conversion value of 1.

• Isolation - An electron’s isolation is defined as the ratio of the calorimeter cluster’s

energy (hadronic and EM) to that of all calorimeter energy within a cone of ∆R ≤ 0.4

(∆R is defined in Eq. 4.3) around the cluster center.

• Phoenix - A Phoenix value of 1 is assigned to electron candidates with tracks formed

by the PHOENIX algorithm.



52

• Lshr - The consistency of the electron candidate’s observed shower pattern to that of

a hadronic particle as observed in test beam studies [66].

• track Z0 - This is the distance of closest approach between the track and the interaction

point.

• Axial and Stereo layers/hits - the number of layers in the COT with hits and the total

number of hits in all layers.

• E/P - This is the ratio of the energy measured in the calorimeter to the momentum of

the track.

• χ2 - This quantity indicates the quality of the track fit to the observed detector signals.

• ∆X - Distance between the track extrapolated to the calorimeter and the calorimeter

shower in the r − φ plane.

• ∆Z - Distance between the track extrapolated to the calorimeter and the calorimeter

shower in the r − z plane.

The details of electron selection using the above quantities are presented in Chapter 7.

5.3 Muons

Muons candidates are formed by matching a muon detector signal to either an OI or an

IO track. Muon candidates can be characterized by the following quantities :

• pT - The transverse momentum of the reconstructed track.

• hadEn and emEn - The amount of energy associated with the muon candidate in the

hadronic (hadEn) and electromagnetic (emEn) calorimeter systems.

• track Z0 - This is the distance of closest approach between the track and the interaction

point.
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Figure 5.1: φ vs. η of tracks extrapolated to non-fiducial regions of the CDF calorimeter in
CDF data. The dots outline the location of unistrumented calorimeter space.

• d0 - This is the track’s impact parameter to the beam axis.

• ρ - The radius at which the track exits the COT.

• ∆Xcmx - Distance between the extrapolated track and the CMX detector stub in the

r − φ plane.

• ∆Xcmu - Distance between the extrapolated track and the CMU detector stub in the

r − φ plane.

• ∆Xcmp - Distance between the extrapolated track and the CMP detector stub in the

r − φ plane.

• Isolation Fraction - This is the fraction of the total momentum within a cone of ∆R ≤

0.4 around the muon candidate track due to the presence of additional tracks.
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• Axial and Stereo Segments - the number of COT track segments identified by the XFT

system.

The details of muon selection using the above quantities are presented in Chapter 7.

5.4 Jets

A quark or gluon created in the CDF II detector is observed as a cone of particles called

a “jet”. Since quarks and gluons carry color charge, when either of these objects is created

QCD interactions pull additional particles out of the vacuum to create colorless particles, a

process known as hadronization; meaning that the original colored particle manifests itself as

a collection of colorless hadrons. When the original quarks and gluons carry large momentum,

the collection of hadrons is boosted into a cone, creating a spray of particles termed a jet. For

analysis, jets are treated as the manifestations of quarks and gluons. While several algorithms

for the reconstruction and estimation of the energy of a jet are currently employed in high

energy physics, the algorithm used in the reconstruction of jet objects in this analysis is

known as the JetClu (Jet Cluster) [67] algorithm.

The version of the JetClu algorithm used in this study reconstructs jet objects from

calorimeter towers with a cone size of ∆R ≤ 0.4. The JetClu algorithm proceeds as follows :

• Each tower with ET > 1 GeV is identified as a seed tower; these are ordered in

decreasing ET .

• Beginning from the highest ET seed tower, all towers within ∆R ≤ 0.4 of the seed

tower are combined to form initial calorimeter clusters. Each seed tower is assigned to

at most one cluster.

• The centroid and transverse energy of each cluster are computed.

• New clusters are formed from all towers within ∆R ≤ 0.4 of the initial cluster centroids

(in decreasing ET ). Once again, each seed tower is assigned to at most one cluster.
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• The centroids for the new clusters are computed, and the previous step is repeated

until the list of towers assigned to each cluster is stable.

• The energy from shared towers (i.e. non-seed towers) between each cluster pair is

computed; if the energy is more than 75% of the the energy of the lower ET cluster,

the pair of clusters is merged.

• The jets are taken as the final set of clusters, with the jet ET , η and φ computed over

the sum of contributing towers.

The initial jet ET computed from calorimeter tower energies is corrected [68] for the

following effects :

• detector effects - The calorimeter energy scale is corrected by setting the measured

Z → e+e− reconstructed mass to LEP averages. The corrections are updated to

account for PMT gains over time.

• η-dependent corrections - Due to the segmentation (and varying coverage, materials

etc.) of the CDF calorimeter there is an η dependence to the measured jet energy.

This dependence is reduced by applying a correction derived by comparing the energy

of jets in events with an exclusive 2 jet final state (where the transverse energy of the

two jets should be equal). Jet energies measured inside the region 0.2 < |η| < 0.6 (far

from uninstrumented regions of the calorimeter) are used to scale the energies of jets

at other values of |η|.

• multiple interactions - There are approximately six pp̄ interactions per bunch crossing.

The majority of these interactions are “soft” scattering interactions; in that no particles

are produced with significant pT . However, energy from these interactions will increase

the measured energy of a jet coming from one particular pp̄ interaction. The average

calorimeter tower energy from soft interactions is measured in “minimum bias” events

which contain two charged particles close to the beampipe (i.e. one at 3.2 < η < 5.9
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Figure 5.2: Comparison of corrected (red) to uncorrected (black) jet ET for jets with a
corrected jet ET > 15 GeV and |η| < 2.0 in CDF data.

and one at −5.9 < η < −3.2). This average tower energy is subtracted from the towers

contributing to a jet’s energy.

The net effect of these corrections on jet transverse energies is shown in Fig. 5.2.

5.5 Missing Transverse Energy

The missing transverse energy 6~ET is computed as the sum over all calorimeter towers :

6~ET = −
∑

i

Ei
T n̂i (5.2)

where the index i runs over all calorimeter towers with |η| < 3.6, n̂i and is a unit vector

perpendicular to the beam axis and pointing at the ith calorimeter tower. We also define
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6ET = |6~ET |.

In events with muons of significant pT , the above missing ET equation must be corrected

for muon track momentums. As minimum ionizing particles, muons do not deposit significant

energy in the calorimeter. With this correction Eq. 5.2 becomes :

6~ET = −
∑

i

Ei
T n̂i − c

∑
j

~pT
j (5.3)

where index j runs over all muons with ~pT > 10 GeV/c.
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Chapter 6: Data Sample and Model

The following chapter describes the data sample and data model used in this search. We

select our sample of candidate ZH events as follows :

• Events with high pT muons or electrons are selected by the CDF trigger system.

• We identify events containing Z → `+`− candidates reconstructed from muon or

electron pairs.

• Each event is required to contain two or more jets with significant ET . Events meeting

the above requirements are used to check our model of the data. We call these events

the PreTag sample.

• We further require that the events contain a H → bb̄ candidate, by demanding that at

least one jet is consistent with a b quark. We refer to such jets as b-tagged jets. Events

meeting the Z, jet, and b-tag requirements form our signal region sample.

The full details of the analysis selection are presented in Chapter 7.

6.1 Data Samples

This search includes CDF Run II data recorded between February 2002 and February 2009

collected with the inclusive high pT lepton triggers: ELECTRON CENTRAL 18, CMUP 18

and CMX 18. These triggers are designed to select events with at least one central, energetic

track which leaves a signature in either the calorimeter or muon detector systems. Events

are also accepted from the Z NOTRACK trigger, designed to identify events with pairs of

electron candidates. The full details of the trigger selection will be presented in Chapter 7.

The initial data sample corresponds to a total integrated luminosity of 4.4 fb−1.

Approximately 7% of this sample, collected while a major component of the CDF II
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detector (silicon, calorimeter, or muon detector) was inoperable, is rejected leaving a

sample of 4.1 fb−1 for further analysis.

A continuous period of detector operation is assigned a sequential number called the run

number. The data used in this search spans the range in run numbers from 138425 to 272214.

We include only “good runs” for which all major components of the CDF II detector were

operational.

Data are also organized by data periods which divide the total sample into segments

of time during which the detector was operated under a consistent configuration (trigger

settings, average instantaneous luminosity, system calibrations, etc. can be changed over

time).

The data periods are defined in Tables 6.1. The total luminosity of the datasets is shown

by trigger in Table 6.2.

The analysis selection is applied to all events in the HIGH PT ELECTRON data stream

passing the ELECTRON CENTRAL 18 and/or the Z NOTRACK triggers and meeting good

run requirements. Events in the HIGH PT MUON data stream are skimmed (by the CDF

Top Group [69]) for the presence of one or more muons. The analysis selection is applied to

all events passing this initial skim which meet the CMUP 18 and/or CMX 18 trigger and

good run requirements.

6.2 Data Model

6.2.1 Simulated Processes

Signal events are modeled with PYTHIA [71] Monte Carlo (MC) samples generated for

Higgs masses between 100 and 150 GeV/c2 in 5 GeV/c2 steps. These samples restrict the

Higgs to decay to bb̄, with the Z decaying to e+e−, µ+µ− or τ+τ−. Signal samples with varied

amounts of initial and final state radiation (ISR/FSR) are generated assuming a Higgs mass

of 120 GeV/c2. The signal MC datasets used are listed in Table 6.3 along with the standard
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Table 6.1: Integrated luminosity and calendar range by data period. Numbers are from [70].
The integrated luminosity is shown for run numbers with operational silicon, muon and
calorimeter systems and active ELECTRON CENTRAL 18 and Z NOTRACK triggers.

data period dates collected integrated luminosity pb−1

0 04 Feb 02 - 22 Aug 04 331.47
1-4 07 Dec 04 - 04 Sep 05 362.94
5-7 05 Sep 05 - 22 Feb 06 258.37
8 9 June 06 - 1 Sept 06 166.29
9 1 Sept 06 - 22 Nov 06 156.76
10 24 Nov 06 - 30 Jan 07 243.19
11 31 Jan 07 - 30 Mar 07 234.99
12 1 Apr 07 - 13 May 07 162.01
13 13 May 07 - 4 Aug 07 280.86
14 28 Oct 07 - 3 Dec 07 32.01
15 5 Dec 07 - 27 Jan 08 161.87
16 27 Jan 08 - 27 Feb 08 101.81
17 28 Feb 08 - 16 Apr 08 183.56
18 18 Apr 08 - 1 Jul 08 304.88
19 1 Jul 08 - 24 Aug 08 206.98
20 24 Aug 08 - 04 Oct 08 226.92
21 12 Oct 08 - 01 Jan 09 435.59
22 2 Jan 09 - 10 Feb 09 265.67

Table 6.2: Luminosity by trigger. The silicon systems are required to be
operational. The CMUP 18 luminosity is reduced (in comparison to the
ELECTRON CENTRAL 18/Z NOTRACK luminosity) due to a rejection of runs with
an improper CMUP 18 trigger configuration in period 18. The lower CMX 18 trigger
luminosity is the result of the CMX trigger not being fully implemented for run numbers
before 15014.

Luminosity Trigger

4.11617 fb−1 ELECTRON CENTRAL 18

4.11617 fb−1 Z NOTRACK

4.1071 fb−1 CMUP 18

4.06287 fb−1 CMX 18
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model production cross sections and H → bb̄ branching ratios.

Background processes possess a detector signature similar to the signal; two leptons and

two (or more) jets in the final state. The dominant background process is Z+jets, with Z+

light flavor jets (u,d,s) forming the major background component before b-tag requirements

are imposed. In events with one or more b-tags, Z+ bb̄ and Z+ cc̄ are the main backgrounds

with Z+mistagged light jets contributing more as tag requirements are loosened. Z+ jets

processes are modeled with ALPGEN [72] for the hard scattering and with PYTHIA for

the hadronization and showering. After b-tagging the contribution from Z+mistagged light

jets is modeled from the data (Section 6.2.2). Diboson processes (ZZ,WZ,WW ) and tt̄ are

modeled with PYTHIA. The tt̄ simulation uses a top quark mass of 175 GeV/c2, a little

above the present world average of 173.1 GeV/c2 [6]. The background MC samples for this

analysis are listed in Table 6.4.

MC events enter the model with a weight given by the following formula :

Event Weight =

∫
L dt× εtrigger × SF recon. × SF b−tag ×

σprocess ×BR

Nevt

(6.1)

where
∫
L dt is the integrated luminosity, σprocess×BR is the process cross-section multiplied

by the appropriate branching ratios, Nevt is the total number of events in the MC sample,

εtrigger is the ratio of the trigger efficiency in MC to that in data, SF recon. is the ratio of the

lepton reconstruction efficiency in MC to that in data, and SF b−tag is the ratio of the b-tag

efficiency in MC to that in data. Process cross sections are taken from Refs. [73, 74, 75]. The

b-tag scale factors, muon reconstruction scale factors, and trigger efficiencies are computed

from the CDF Joint Physics Scale Factor Class [76]. The b-tag scale factors are set equal

to 1.0 before b-tag requirements are imposed. Analysis specific electron reconstruction scale

factors are computed for each electron category.
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Table 6.3: Signal MC samples. Numbers are taken from [77] where the cross-sections (σZH)
are computed using the method outlined in Ref. [78] and the branching ratios are computed
with the HDECAY code discussed in Ref. [79]. A 5% uncertainty is assumed on all cross-
sections.

MH(GeV /c2) σZH( pb) BR(H → bb̄)

100 0.16851 0.8121
105 0.14457 0.7957
110 0.12458 0.7702
115 0.10778 0.7322
120 0.09353 0.6789
125 0.08139 0.6097
130 0.07109 0.5271
135 0.06222 0.4362
140 0.05468 0.3436
145 0.04811 0.2556
150 0.04240 0.1757

120 ISR+ 0.09353 0.6789
120 ISR- 0.09353 0.6789

120 FSR+ 0.09353 0.6789
120 FSR- 0.09353 0.6789
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Table 6.4: Backgrounds modeled with MC. The σ ×BR for Z+ lf (light flavor) jets, cc̄ and
bb̄ are from [73], and vary according to `+`− mass and the jet multiplicity. These samples
are scaled by an additional factor of 1.4 to account for the difference between leading and
next to leading order predictions. WW , WZ and ZZ cross-sections are from [74]. The tt̄
cross-section is from [75].

Process MC Generator σ ×BR

(Z → ``)+ lf jets ALPGEN+PYTHIA 3.3 fb to 1514 pb

(Z → ``) + cc̄ + jets ALPGEN+PYTHIA 107 to 1280 fb

(Z → ``) + bb̄ + jets ALPGEN+PYTHIA 38.5 to 625 fb

WW PYTHIA 12.4 pb

WZ PYTHIA 3.7 pb

ZZ PYTHIA 3.8 pb

tt̄ PYTHIA 6.7 pb

6.2.2 Data-Derived Backgrounds

Events where one or more jets are incorrectly classified as a muon (resulting in a “fake”

Z → µµ event) are estimated from data events meeting all selection requirements and

containing two like-sign muons. The CDF muon detectors utilized in this search cover

|η| < 1.0, a region where adequate tracking coverage ensures accurate measurement of muon

charge. For electrons, we utilizes calorimeter detectors extending to |η| < 3.6. In forward

regions, charge measurement is of limited accuracy due to insufficient tracking coverage. This

renders a like-sign electron sample an insufficient model for “fake” Z → ee events. Instead,

the probability that a jet fakes an electron is measured in jet triggered data for each of our

electron categories. These fake rates and their application will be discusses in Chapter 7.

In order to estimate the fraction of Z+light flavor jets events entering our final b-tagged

sample, each data event possessing a Z candidate and 2 or more jets is assigned a mistag

weight and associated uncertainty. The mistag weights represent the probability for a
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particular jet to be incorrectly identified as a b-jet by a particular b-tagging algorithm.

These weights are computed for individual jets in various data and MC samples by the

CDF High pT B-Tag Group [80]. The mistag probability for a given jet is parameterized in

seven quantities listed in Table 6.5.

Event kinematics are computed using the Z candidate and the two highest Et jets,

while the event’s mistag probability is computed by properly accounting for each possible

combination of taggable jet(s) in the event. Taggable jets have at least two tracks associated

with a secondary vertex and an Et ≥ 10 GeV. The mistag background is thus modeled using

re-weighted Z+ ≥ 2 jets data.

Table 6.5: Variables entering the mistag probability calculation

.

Jet ET

number of tracks in the jet

jet |η|
number of vertices in the event

z coordinate of the primary event vertex

run number

sum of the ET of all jets in the event with ET ≥ 10 GeV
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Chapter 7: Event Selection

Signal ZH → ``bb̄ events are distinguished by the presence of two oppositely charged

energetic leptons and two b−jets with high transverse momentum. The transverse energies of

the leading and next-to-leading leptons and jets for signal MC events are shown in Fig. 7.1.

The “leading” lepton (jet) is defined as the lepton (jet) with the largest ET , while the “next-

to-leading” lepton (jet) is the lepton (jet) with the second largest ET in the event. In order to

compensate for the low ZH production cross-section (σZH ∼ 0.1 pb) and the low branching

fraction of Z → `+`− we devise electron identification cuts with the goal of maximizing Z

reconstruction efficiency. Lepton selection is designed to meet the minimum requirements

of the CDF high pT lepton triggers (achieving high signal acceptance), while jet selection

is designed to ensure Z+ ≥ 2 jet kinematics are well understood. Z+low (ET < 15 GeV)

jets are not well modeled by our simulation and are removed by the jet ET requirements. A

combination of b-tagging algorithms is used to achieve a high signal–to–background purity.

Details of lepton identification, Z reconstruction, jet selection and b-tagging are discussed

in the following sections.

7.1 Trigger Selection

Candidate events pass the requirements of one of four CDF high pT lepton triggers:

ELECTRON CENTRAL 18, Z NOTRACK, MUON CMUP 18, or MUON CMX 18. To

fire ELECTRON CENTRAL 18, an event must contain at least one electromagnetic

deposit of Et ≥ 18 GeV in the central region of the detector, with an associated track of

pT ≥ 9 GeV/c. The ratio of energy deposited in the hadronic calorimeter to that in the

electromagnetic calorimeters must be less than 12.5%, and the cluster’s shower pattern

must be consistent with an electron shower. The Z NOTRACK trigger is satisfied by

events containing two or more calorimeter deposits of Et ≥ 18 GeV restricted to the region
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Figure 7.1: Distribution of leading and next-to-leading lepton (left) and jet (right) transverse
energies in simulated ZH → ``bb̄ events. The simulation has a Higgs mass of 120 GeV/c2.

|η| ≤ 3.6. The MUON CMUP 18 and MUON CMX 18 triggers fire on events with “stubs”

in the appropriate muon system matched to a track with pT ≥ 18 GeV/c. The trigger

requirements are summarized in Tables 7.1 through 7.4.

7.1.1 Trigger Efficiencies

The probability for a given event to fire a particular trigger can be parameterized in terms

of various quantities including run number, calorimeter deposit η, and track pT . These trigger

probabilities are computed by the CDF Joint Physics Group and are available in the Joint

Physics Scale Factor Class [76].

Each MC event is assigned a trigger efficiency ( εtrigger in Eq. 6.1) based on the event’s

lepton content. Events containing multiple leptons or capable of firing multiple triggers are

assigned weights computed using all combinations of appropriate triggers and leptons. Since

the simulated data periods in the MC samples available do not directly match the data

periods in data ( max run # in MC is 237795 while the analysed data go to run 272214) a

weighted average of run dependent efficiencies is applied to each MC event.
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Table 7.1: ELECTRON CENTRAL 18 trigger path

Level 1

One central EM energy cluster with ET ≥ 8 GeV

Track hits identified by XFT in at least 4 COT layers

XFT track pT ≥ 8.34 GeV/c

Level 2

Central energy cluster ET > 18 GeV

cluster |η| ≤ 1.317

Track hits identified by XFT in at least 4 COT layers

XFT track pT ≥ 8.34 GeV/c

Level 3

EM object with ET ≥ 18 GeV

Lshr ≥ 0.4

Central track with pT ≥ 9 GeV/c

EM object with HadEm ≤ 0.125
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Table 7.2: Z NOTRACK trigger path

Level 1

Two EM energy clusters

a plug or central EM cluster with ET ≥ 8 GeV

central EM cluster with HadEm ≤ 0.125

central EM cluster with HadEm ≤ 0.0625

Level 2

Two seed towers at |η| < 3.6 and with EM energy ≥ 8 GeV each

Each seed tower has a neighboring tower with EM energy ≥ 7.5 GeV

Total ET in two seed towers > 16 GeV

Level 3

Two EM objects

each ET > 18 GeV

Table 7.3: MUON CMX 18 trigger path

Level 1

CMX stub with associated track pT ≥ 6 GeV/c

Track hits identified by XFT in at least 4 COT layers

XFT track pT ≥ 8.34 GeV/c

Level 2

Track hits identified by XFT in at least 4 COT layers

XFT track pT ≥ 14.77 GeV/c

Level 3

|∆Xcmx| ≤ 10 cm

Track with pT ≥ 18 GeV/c
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Table 7.4: MUON CMUP 18 trigger path

Level 1

CMU or CMP stub with associated track pT ≥ 6 GeV/c

XFT track matched to stub with pT ≥ 4.09 GeV/c

Level 2

Track hits identified by XFT in at least 4 COT layers

XFT track pT ≥ 14.77 GeV/c

Level 3

|∆Xcmp| ≤ 20 cm

|∆Xcmu| ≤ 10 cm

Track with pT ≥ 18 GeV/c

7.2 Muon Identification

The search defines three muon categories CMUP, CMX and CMIO. The CMUP and

CMX categories are designed to meet the requirements of high pT central muon triggers and

match the CDF Top Group’s definitions closely. Each Z → µµ candidate event must contain

at least one CMUP or CMX muon. The CMUP and CMX selection requires a high quality

track with pT ≥ 20 GeV/c. The full CMUP/CMX selection is summarized in Tables 7.5

and 7.6. The third muon category, CMIO, is defined by loose selection requirements. CMIO

muon candidates must have track pT ≥ 10 GeV/c and no “stub” requirements are imposed.

The CMIO selection requirements are summarized in Table 7.7.

7.3 Electron Identification

To increase the efficiency of Z → ee reconstruction in events passing

ELECTRON CENTRAL 18 or Z NOTRACK we define nine electron classes listed in
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Table 7.5: CMX muon selection.

CMX Muon Selection
pT ≥ 20GeV /c

Had Energy ≤ 6 GeV
Em Energy ≤ 2 GeV

CMX ρ > 140 cm
≥ 3 axial and ≥3 stereo segments

Isolation fraction ≤ 0.1
|∆Xcmx| < 6.0 cm

Impact parameter d0 < 0.02 w/Silicon hits (0.2 w/out)
Track origin (Z0) is within 60 cm of z=0

Table 7.6: CMUP muon selection.

CMUP Muon Selection
pT ≥ 20GeV /c

Had Energy ≤ 6 GeV
Em Energy ≤ 2 GeV

>= 3 axial and >=3 stereo segments
Isolation fraction < 0.1
|∆Xcmu| < 3.0 cm
|∆Xcmp| < 5.0 cm

Impact parameter d0 < 0.02 w/Silicon hits (0.2 w/out)
Z0 is within 60 cm of z=0

Table 7.7: The loose muon selection criteria for CMIO muons.

CMIO Muon Selection
pT ≥ 10GeV /c

Had Energy ≤ 6 GeV
Em Energy ≤ 2 GeV

Isolation fraction < 0.1
Impact parameter d0 < 0.02 w/Silicon hits (0.2 w/out)

≥ 2 axial and ≥2 stereo segments
≥ 1 COT hits

No stub requirements
Z0 is within 60 cm of z=0
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Table 7.8: The electron types we consider in this analysis.

Tc Tight-central
Lc1 Loose-central 1
Lc2 Loose-central 2
Tp Tight Plug Phoenix
Lp Loose Plug

LpPhx Loose Plug Phoenix
LpNphx25 Loose Plug Non-phoenix, 25 GeV ET cut
LpNphx33 Loose Plug Non-phoenix, 33 GeV ET cut

CrkTrk Crack Track, no Em requirement

Table 7.8. The categories are based on the ’tight’ and ’loose’ CEM/PHX electrons defined

in Ref. [81], with relaxed requirements for non-trigger and plug electrons. The following

subsections discuss the electron selection, calculation of reconstruction scale factors, and

fake rate estimates in detail.

7.3.1 Central Electron Identification

We define four categories of central electrons (|η| ≤ 1.1) :

• A tight central electron (Tc).

• A loose central electron (Lc1) with intermediate selection requirements.

• A very loose central electron (Lc2) with minimal selection requirements.

• A track based electron category (CrkTrk) reconstructed from high quality tracks that

do not point to instrumented regions of the calorimeter. This category is based on the

electron CrkTrk used in Ref. [82].

The selection criteria for each central electron type are presented in Tables 7.9 to 7.12.
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Table 7.9: Tight central (Tc) electron selection.

Tc (Tight central) Selection
Region = 0

Fiducial = 1 or 2
ET ≥ 18

Trk PT ≥ 9 GeV
Not a conversion
|TrackZ0| ≤ 60 cm

≥ 2 Ax layers ≥ 10 hits
≥ 2 St layers ≥ 10 hits

HadEm ≤ 0.055 + 0.00045 × En
Isolation – 0.35 × (Nvtx – 1) ≤ 3 + 0.02 ×ET

Lshr ≤ 0.2
E
P
≤ 2.5 + 0.015 ×ET or TrkPt ≥ 50 GeV

|∆ Z | ≤ 3 cm
-3 ≤ ∆X ×Q ≤ 1.5

χ2
strip ≤ 25

Table 7.10: Loose central 1 (Lc1) electron selection.

Lc1 (Loose central 1) Selection
Region = 0
Not a Tc
ET ≥ 18

Trk PT ≥ 9 GeV
Not a conversion
|TrackZ0| ≤ 60 cm

HadEm ≤ 0.055 + 0.00045 × En
Isolation – 0.35 × (Nvtx – 1) ≤ 4 + 0.02 ×ET

Lshr ≤ 0.2
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Table 7.11: Loose central 2 (Lc2) electron selection.

Lc2 (Loose central 2) Selection
Region = 0

Not a Tc or Lc1
ET ≥ 10

Trk PT ≥ 5 GeV
|TrackZ0| ≤ 60 cm

HadEm ≤ 0.055 + 0.00045 × En
Isolation – 0.35 × (Nvtx – 1) ≤ 4 + 0.02 ×ET

Table 7.12: Crack Track (CrkTrk) electron selection.

CrkTrk (Crack Track) Selection
|Z0| ≤ 60 cm
|D0| ≤ 0.2 cm

≥ 3 Ax layers & ≥ 15 hits
≥ 3 St layers & ≥ 15 hits

Not a CMUP or CMX muon
Not Track Fiducial
Not a conversion

pT ≥ 20
Isolation

pT
< 0.1 or EmIsolation

pT
< 0.1
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Table 7.13: Tight plug (Tp) electron selection.

Tp (Tight plug) Selection
Region = 1
ET ≥ 25

Phoenix = 1
1.2 ≤ |η| ≤ 2.8

if En ≤ 100 GeV, HadEm ≤ 0.05
if En > 100 GeV, HadEm ≤ 0.05 + 0.026 × log(En/100)

Isolation – 0.35 × (Nvtx – 1) ≤ 1.6 + 0.02 ×ET

χ2
3x3 ≤ 25

7.3.2 Plug Electron Identification

In the “plug” regions of the detector (|η| > 1.1) we define five electron classes, each with

an ET ≥ 18 GeV requirement, to match the ET requirement of the Z NOTRACK trigger.

The five categories of plug electron are :

• A tight plug electron (Tp) is required to have Et ≥ 25 GeV and consist of a phoenix

track pointing to a calorimeter deposit phoenix track match [83].

• A loose plug electron with a phoenix track match (LpPhx) and Et ≥ 18 GeV which is

not a Tp.

• A loose plug electron without a phoenix track match (LpNphx33) and Et ≥ 33 GeV.

• A loose plug electron without a phoenix track match (LpNphx25) and 33 GeV > Et ≥

25 GeV.

• A loose plug electron without a phoenix track match (Lp) and 25 GeV > Et ≥ 18 GeV.

The selection criteria for each plug electron type are listed in Tables 7.13 through 7.17.
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Table 7.14: Loose plug phoenix(LpPhx) electron selection.

LpPhx (Loose plug Phoenix) Selection
Region = 1
Not a Tp

Phoenix = 1
ET ≥ 18

if En ≤ 100 GeV, HadEm ≤ 0.05
if En > 100 GeV, HadEm ≤ 0.05 + 0.026 × log(En/100)

Isolation – 0.35 × (Nvtx – 1) ≤ 2.5 + 0.02 ×ET
Isolataion

ET
< 0.1

Table 7.15: Loose plug non-phoenix(LpNphx25) electron selection.

LpNphx25 (Loose plug Non-phoenix) Selection
Region = 1

Not a Tp or LpPhx
Phoenix = 0
ET ≥ 25

if En ≤ 100 GeV, HadEm ≤ 0.05
if En > 100 GeV, HadEm ≤ 0.05 + 0.026 × log(En/100)

Isolation – 0.35 × (Nvtx – 1) ≤ 2.5 + 0.02 ×ET
Isolataion

ET
< 0.1

Table 7.16: Loose plug non-phoenix(LpNphx33) electron selection.

LpNphx33 (Loose plug Non-phoenix) Selection
Region = 1

Not a Tp or LpPhx or LpNphx25
Phoenix = 0
ET ≥ 33

if En ≤ 100 GeV, HadEm ≤ 0.05
if En > 100 GeV, HadEm ≤ 0.05 + 0.026 × log(En/100)

Isolation – 0.35 × (Nvtx – 1) ≤ 2.5 + 0.02 ×ET
Isolataion

ET
< 0.1
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Table 7.17: Loose plug (Lp) electron selection.

Lp (Loose plug) Selection
Region = 1
Not a Tp
ET ≥ 18

if En ≤ 100 GeV, HadEm ≤ 0.05
if En > 100 GeV, HadEm ≤ 0.05 + 0.026 × log(En/100)

Isolation – 0.35 × (Nvtx – 1) ≤ 2.5 + 0.02 ×ET

7.3.3 Electron Reconstruction Scale Factors

To ensure that the fraction of the total electron sample derived from each electron

category is identical in the data and simulation, we apply a correction in the form of a

weight scale factor to each MC electron. For each electron type we define scale factors

using the method outlined in Ref. [84]. We define loose probe electrons (Tables 7.18,7.19)

in the central and plug regions. Probe Z candidates are formed from Tc+central probe and

Tp+plug probe electron candidates. The scale factor for a given central (plug) electron

category is calculated using the ratio of the number of Z candidates formed from an

electron of that category and a Tc (Tp) electron to the number of probe Z candidates.

After subtracting off background contamination from sidebands, the scale factor is taken as

the ratio obtained in data divided by the ratio from MC. Scale factors are computed in

three Z mass regions, with the difference in the values used to set a systematic uncertainty

on the scale factor. The results are listed in Table 7.20. Electrons in MC are weighted

(used to compute SF recon. in Eq. 6.1) by the scale factor computed in the 76− 106 GeV/c2

mass range, with a 1% systematic uncertainty assigned to cover the average deviation in

scale factors measured in different mass windows. For the CrkTrk category, we use the

scale factor found in Ref. [82], 0.951 averaged over 22 run periods.
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Table 7.18: Probe (CEM) electron selection.

Probe (CEM) Selection
Region = 0
ET ≥ 10

TrkpT ≥ 10
HadEm ≤ 0.055 + 0.00045 ×En

Isolation – 0.35 × (Nvtx – 1) ≤ 4.5 + 0.02 ×ET

Table 7.19: Probe (PEM) electron selection.

Probe (PEM) Selection
Region = 1
ET ≥ 18

if En ≤ 100 GeV, HadEm ≤ 0.05
if En > 100 GeV, HadEm ≤ 0.05 + 0.026 × log(En/100)

Isolation – 0.35 × (Nvtx – 1) ≤ 3.0 + 0.02 ×ET

Table 7.20: Electron scale factors in different mass regions.
e Type 66-116 GeV/c2 76-106 GeV/c2 86-96 GeV/c2

Tc 0.987063 0.985325 0.98961
Lc1 1.00452 1.00415 1.00296
Lc2 1.00098 1.00088 1.00033
Tp 0.961057 0.937155 0.972057
Lp 0.998407 0.9969 0.994712

LpPhx 1.01429 1.01449 1.01405
LpNphx25 1.00468 1.01075 1.00326
LpNphx33 1.00617 1.03572 1.01415
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7.3.4 Fake Rates

We calculate the probability to misidentify a jet as an electron for each of our electron

categories (fake rate) in the jet triggered data samples : jet20, jet50, jet70, and jet100.

These jet samples are collected with triggers that require energetic jets of ET greater than

20, 50, 70 and 100 GeV respectively. In order to suppress the presence of real electrons

from W processes in the jet triggered samples, we impose a cut on the transverse missing

energy (6ET < 15 GeV). Similarly we require jet triggered events to have no more than one

electron candidate to remove real electrons from Z decays. For the “denominator” in our

fake rate calculation we use all cone 0.4 jets with sufficient ET to meet the electron

category’s requirement. Denominator jets must also be in the correct region of the detector

(central/plug) for a given electron class. The lead (trigger) jet is not included in the

denominator to avoid trigger bias. For “numerator” objects we use EM objects which pass

our electron selection and are matched to a denominator jet within ∆R < 0.4. The fake

rate is calculated as the ratio of numerator objects to denominator objects in each bin of

jet ET . We use variable-sized bins to maintain statistics, and we find that a 50%

systematic uncertainty is required to span the fake rates coming from each jet sample. The

electron fake rate functions for each electron type are shown in Figs. 7.2, 7.3, and 7.4. For

the CrkTrk category like-sign data is used to estimate the fake contribution in the Z to Tc

+ CrkTrk subsample.

When a jet is misidentified as an electron, it can be erroneously paired with a real electron

or a similarly misidentified jet. The result is a fake Z → e+e− event. To derive a model of

the fake Z → e+e− background, we identify all jets and electrons in our electron triggered

event sample. Each jet is assigned a fake probability using the fake rate functions which

are parameterized in jet ET . We identify all combinations of electron+jet and jet+jet which

produce a fake Z. An event enters the fake Z → e+e− model once for every combination

identified, with a weight reflecting the probability of misidentifying the jet(s) and forming

a fake Z. Each time an event enters the model, its kinematics are recomputed for the
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appropriate arrangement of electrons and jets.

When used in the reconstruction of a fake Z, the transverse energy of a jet is adjusted

to match the value expected for an electron. The degree of adjustment is derived from the

ratio of the ET of the EM object to that of the matched jet as observed in jet triggered data.

We fit the distribution of the ratio, and use the resulting Gaussian to smear the jet energies

in our fake Z model. Separate fits are performed for central and plug objects. The ratio of

EM to jet ET is shown in Fig. 7.5 by detector region.

The expected fake fraction for each Z category is shown in Table 7.21. The relative fake

fractions indicate the categories with the highest non-Z background rates. We demonstrate

that there is no real Z contamination in our fake estimate by showing the dilepton mass

distribution for our expected fake background shape in Figs. 7.6, and 7.7.

Table 7.21: For each dilepton category, we list the percentage of Z’s in data, as well as the
expected fake percentage.

Combination % of Total Z’s Candidates in data % fakes

TcTc 12.18 0.015
TcLc 5.73 4.06
TcTp 16.22 0.034
TcLp 15.87 3.5

Lc1Lc1 0.35 4.0
TpLc 4.24 8.1
Lc1Lp 2.34 14.75
TpTp 5.1 0.03
TpLp 5.2 0.09
LpLp 1.08 5.95

TcCrkTrk 5.73 4.8
MuonMuon 25.9 0.27

All 100 2
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Figure 7.2: Fake rates for Tc, Lc1 and Lc2 type electrons. The mean fake rate from jet20
(black) , jet50 (red), jet70 (green) and jet100 (blue) data is applied to the high pT electron
data. The 50 % error band is shown in grey.
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Figure 7.3: Fake rates for Tp, Lp and LpPhx type electrons.
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Figure 7.4: Fake rates for LpNphx25 and LpNphx33 type electrons.
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Figure 7.5: Ratio of Em object Et to jet Et in jet triggered data.
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Figure 7.6: Fake (rates measured in jet triggered events) component (yellow) of total data
(black) for Z → ee.
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Figure 7.7: Fake (from like-sign events) component (yellow) of total data (black) for Z → µµ
and Z → Tc+ CrkTrk
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7.4 Z Reconstruction and Classification

The pairs of leptons used to form Z candidates in this analysis are limited to the

combinations listed in Table 7.22. We require the dilepton mass of the two electron or

muon candidates to fall in the mass window 76 ≤ Mll ≤ 106 GeV/c2. For events with more

than two identified leptons, the Z candidate with largest transverse momentum is used.

We impose an opposite charge requirement for all µµ and central-central electron pairs. No

charge requirement is imposed when one (or more) of the candidate electrons is in the plug

region of the detector. When both electron candidates contain a track we require that

distance between their z positions at closest approach to the beamline |∆Track Z0| ≤ 4 cm.

The mass of the reconstructed Z candidate is shown in Fig. 7.8 for Z → ee and in Fig. 7.9

for Z → µµ. Event totals are tabulated in Tables 7.23 and 7.24.

Table 7.22: Allowed dilepton types considered in this analysis.

Combination 1st Lepton 2nd Lepton Additional Cuts

TcTc Tc Tc opposite charge
TcLc Tc Lc1, Lc2 opposite charge
TcTp Tc Tp none
TcLp Tc LpPhx, LpNphx25, LpNphx33, Lp none

Lc1Lc1 Lc1 Lc1 opposite charge
TpLc Tp Lc1, Lc2 none
Lc1Lp Lc1 LpPhx, LpNphx25, LpNphx33 none
TpTp Tp Tp none
TpLp Tp LpPhx, LpNphx33 none
LpLp LpPhx LpPhx, LpNphx33 both Et >= 30

TcCrkTrk Tc CrkTrk opposite charge
MuonMuon CMUP, CMX CMUP,CMX,CMIO opposite charge

7.4.1 Additional Requirements on very Loose Z’s

We apply additional requirements to improve the quality of Z’s formed from very loose

electron pairs. The requirements are listed in Table 7.25. The effect of the additional
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Table 7.23: Event totals for Z → ee selection. The systematic uncertainty on the background
is about 20%

Events Satisfying Z → ee Selection Requirements
Source ≥ 2 leptons 76 ≤Mee ≤ 106 GeV/c2

tt̄ 198.47 67.07

WW 318.73 99.81

WZ 251.95 214.24

ZZ 262.45 229.73

Z → ττ 2318.79 231.24

Z+jets (bb̄) 1846.41 1748.56

Z+jets (cc̄) 4093.59 3884.81

Z+jets (lf) 537504 481673

fakes 39842.6 13509.8

ZH (120 GeV/c2) 4.16 3.74

Total Background 586636.99 501658.26

Data 567260 475927
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Table 7.24: Event totals for Z → µµ selection. The systematic uncertainty on the
background is about 20%

Events Satisfying Z → µµ Selection Requirements
Source ≥ 2 leptons 76 ≤Mµµ ≤ 106 GeV/c2

tt̄ 87.34 26.82

WW 133.99 40.82

WZ 120.21 107.74

ZZ 133.87 120.36

Z → ττ 617.63 27.59

Z+jets (bb̄) 881.6 857.23

Z+jets (cc̄) 1841 1789.43

Z+jets (lf) 207197 186837

fakes 2329 575

ZH (120 GeV/c2) 2.4 2.25

Total Background 213341.64 190382.0

Data 199767 174058
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Figure 7.8: Dilepton mass in Z candidates reconstructed from two electron candidates.
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Figure 7.9: Dilepton mass in Z candidates reconstructed from two muon candidates.

requirements is to suppress poorly modeled events and improve the agreement between data

and MC as visible in Fig. 7.10.

7.4.2 EM energy corrections

As seen in Fig. 7.11 , the Z mass distribution does not peak at the same value in data

and MC. Period specific scale factors are computed from the difference between Z mass fits
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Table 7.25: Summary of additional requirements on electrons forming loose Z’s.

For a Lc1-Lc1 Z :
one of the Lc1 electrons should meet the following requirements :

number of track axial segments is ≥ 1
number of track axial hits is ≥ 5

number of track stereo segments is ≥ 1
number of track stereo hits is ≥ 5

|∆Z| ≤ 3
χ2 ≤ 25

For a Lc1-Lp Z
the Lc1 electron should pass :

number of track axial segments is ≥ 1
number of track axial hits is ≥ 5

number of track stereo segments is ≥ 1
number of track stereo hits is ≥ 5

|∆Z| ≤ 3
χ2 ≤ 25

or the Lp electron should pass :

2.4 ≥ |η| ≥ 1.2
(En ≤ 100 & Hadem ≤ 0.05) or (En > 100 & Hadem ≤ 0.05 + 0.026 logEn/100.0)

(Isolation− 0.35 ∗ (Nvtx − 1)) ≤ (1.6 + 0.02 ∗ E)

For a Tp-Lp Z

the Lp electron should pass :

2.4 ≥ |η| ≥ 1.2
(En ≤ 100 & Hadem ≤ 0.05) or (En > 100 & Hadem ≤ 0.05 + 0.026 logEn/100.0)

(Isolation− 0.35 ∗ (Nvtx − 1)) ≤ (1.6 + 0.02 ∗ E)

For a Lp-Lp Z

one Lp electron should pass :

2.4 ≥ |η| ≥ 1.2
(En ≤ 100 & Hadem ≤ 0.05) or (En > 100 & Hadem ≤ 0.05 + 0.026 logEn/100.0)

(Isolation− 0.35 ∗ (Nvtx − 1)) ≤ (1.6 + 0.02 ∗ E)
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Figure 7.10: Distributions of the Z mass, dijet Mass and Number of tight jets for Lc1Lc1,
LpLp, TpLp, and Lc1Lp Z’s before and after the additional cuts listed in Table 7.25 are
applied.
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for data and MC following the method outlined in [84]. The Z mass distribution in the

76 ≤ Mee ≤ 106 GeV/c2 mass range is fit to a Gaussian in events with a Z candidate and

less than two jets. The ratio of the mean of the Z mass fit in MC to that in data is the

correction scale factor. The central (plug) scale factors are computed from events in which

both electrons are central (plug). The scale factors presented in Table 7.26 are applied to the

electrons in data. Application of the scale factors produces a small change in our acceptance.

To ensure that we account for the effect of incorrect lepton energy measurement on our MC

normalization we include a 1.5% systematic uncertainty.

Table 7.26: Scale factors for central and plug electron energies.

Data Period Central Scale Factor Plug Scale Factor

0 1.004 0.9989

1-4 1.007 1.006

5-7 1.009 1.004

8 1.008 1.013

9 1.009 0.9953

10 1.009 1.005

11 1.012 1.006

12 1.013 1.001

13 1.013 0.9978

14 1.009 1.001

15 1.012 1.010

16 1.013 1.006

17 1.013 0.9946

18 1.007 0.9992

19 1.004 1.003

20 1.006 1.003

21 1.007 1.008

22 1.005 1.004
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Figure 7.11: Z mass in electron triggered data before and after corrections are applied.

7.5 Jet Selection

After requiring a Z candidate, we impose the requirement that events have two or more

Cone 0.4 jets with ET ≥ 15 GeVand |η| ≤ 2.0. Jets meeting this requirement are referred to

as “tight jets”. We further require that 1 or more of these jets have ET ≥ 25 GeV.

Events passing the Z+ ≥ 2 tight jets selection, with at least one of ET ≥25 GeV, form

the “PreTag” sample. These events are further divided into two categories (high and low

S/B) to maintain high sensitivity depending on which Z selection the events satisfy. Events

passing only the muon triggers or containing a Tc electron are placed in the ’high’ class,

while events containing a CrkTrk or passing only from the Z NOTRACK trigger enter the

’low’ S/B category. Table 7.27 summarizes the Z categories and high/low grouping. We find
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good agreement between our background model and observed data in our PreTag samples

in both the predicted number of events (Tables 7.28 and 7.29) and in the shapes of various

distributions (Figs. 7.12 through 7.17).

Table 7.27: Z type and S√
B

category.

High Low

TcTc Lc1Lc1
TcLc TpLc
TcTp Lc1Lp
TcLp TpTp
µ µ TpLp

LpLp
TcCrkTrk

7.6 b-tagging

In order to significantly diminish the Z + jets background we impose b-tag requirements

on our PreTag sample; that is we require at least one jet in the event to be identified as the

product of a b quark’s hadronization.
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Table 7.28: Preselection event totals (high S/B).

Source PreTag high S/B

tt̄ 53.01 ± 11.26

WW 5.22 ± 0.71

WZ 117.89 ± 15.95

ZZ 118.14 ± 15.98

Z → ττ 2.98 ± 1.21

Z+jets (bb̄) 370.93 ± 150.71

Z+jets (cc̄) 682.59 ± 277.34

Z+jets (lf) 9977.08 ± 1995.42

fakes 541.02 ± 270.51

ZH (120 GeV/c2) 4.25 ± 0.32

Total Background 11868.9 ± 2038.4

Data 11806
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Table 7.29: Preselection event totals (low S/B).

Source PreTag low S/B

tt̄ 27.12 ± 5.76

WW 4.3 ± 0.58

WZ 27.04 ± 3.66

ZZ 23.28 ± 3.15

Z → ττ 4.33 ± 1.76

Z+jets (bb̄) 74.51 ± 30.28

Z+jets (cc̄) 142.25 ± 57.79

Z+jets (lf) 2206.9 ± 441.38

fakes 504.44 ± 252.22

ZH (120 GeV/c2) 0.67 ± 0.05

Total Background 3014.17 ± 512.6

Data 3061
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Figure 7.12: Distributions of the number of tight jets, Z pT and 6ET in preTag events in the
high S/B Z category.
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Figure 7.13: Distributions of the number of tight jets, Z+2 jet Mass and jet ET ’s in preTag
events in the high S/B Z category.



98

J1_Eta
-4 -3 -2 -1 0 1 2 3 4

 N
um

be
r 

of
 E

ve
nt

s

200

400

600

800

1000

1200

1400

)-1CDF Run II Preliminary (4.1 fb

J1_Eta
-4 -3 -2 -1 0 1 2 3 4

 N
um

be
r 

of
 E

ve
nt

s

200

400

600

800

1000

1200

1400
 WW,WZ,ZZ

 Fakes
 tt
 uncertainty

 data
 Z + lf jets

 Z + bb
 Z + cc

 1500 × 2 = 120 GeV/cH M

preTag (high)
)-1CDF Run II Preliminary (4.1 fb

J2_Eta
-4 -3 -2 -1 0 1 2 3 4

 N
um

be
r 

of
 E

ve
nt

s
200

400

600

800

1000

1200

1400
)-1CDF Run II Preliminary (4.1 fb

J2_Eta
-4 -3 -2 -1 0 1 2 3 4

 N
um

be
r 

of
 E

ve
nt

s
200

400

600

800

1000

1200

1400  WW,WZ,ZZ

 Fakes
 tt
 uncertainty

 data
 Z + lf jets

 Z + bb
 Z + cc

 1500 × 2 = 120 GeV/cH M

preTag (high)

)-1CDF Run II Preliminary (4.1 fb

MET_phi
-6 -4 -2 0 2 4 6

 N
um

be
r 

of
 E

ve
nt

s

100

200

300

400

500

600
)-1CDF Run II Preliminary (4.1 fb

MET_phi
-6 -4 -2 0 2 4 6

 N
um

be
r 

of
 E

ve
nt

s

100

200

300

400

500

600  WW,WZ,ZZ

 Fakes
 tt
 uncertainty

 data
 Z + lf jets

 Z + bb
 Z + cc

 1500 × 2 = 120 GeV/cH M

preTag (high)
)-1CDF Run II Preliminary (4.1 fb

Z_Eta
-10 -8 -6 -4 -2 0 2 4 6 8 10

 N
um

be
r 

of
 E

ve
nt

s

200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400

)-1CDF Run II Preliminary (4.1 fb

Z_Eta
-10 -8 -6 -4 -2 0 2 4 6 8 10

 N
um

be
r 

of
 E

ve
nt

s

200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400  WW,WZ,ZZ

 Fakes
 tt
 uncertainty

 data
 Z + lf jets

 Z + bb
 Z + cc

 1500 × 2 = 120 GeV/cH M

preTag (high)
)-1CDF Run II Preliminary (4.1 fb

Figure 7.14: Jet 1, Jet 2, and Z ηs and 6ET φ in preTag events in the high S/B Z category.
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Figure 7.15: Distributions of the number of tight jets, Z pT and 6ET in preTag event in the
low S/B Z category.
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Figure 7.16: Distributions of the number of tight jets, Z+2 jet Mass and jet ET ’s in preTag
events in the low S/B Z category.
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Figure 7.17: Jet 1, Jet 2, and Z ηs and 6ET φ in preTag events in the low S/B Z category.
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Figure 7.18: Depiction of a b jet with secondary vertex. d0 is the impact parameter of a
displaced track. For simplicity, prompt tracks are not shown. Image from [85].

When a b quark is produced in the CDF II detector, it will hadronize producing a jet

containing B hadrons. These hadrons possess a lifetime long enough to allow them to travel

a short distance (about 1 cm) before decaying. Therefore, a b quark manifests as a jet which

contains several tracks pointing to a displaced (secondary) vertex within the jet cone. This

topology is depicted in Fig. 7.18.

We examine each tight jet for signs of a picosecond lifetime hadron: a displaced vertex,

or tracks with large impact parameters. These characteristics are typical of jets resulting

from b-quark hadronization. We use two algorithms to identify (tag) b jets: one based on

evidence for a displaced vertex and one based on track impact parameters:

• The secondary vertex (SecVtx) [86] tagging algorithm tags b jets using displaced vertex

information. If two or more tracks associated with the jet are found to originate from a

secondary vertex within the jet, the algorithm tags the jet as a b jet. We use both the

“Tight” and “Loose” SecVtx operating points which differ in track and vertex quality
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Figure 7.19: Tagging efficiency for b jets in tt̄ MC as a function of jet ET (top left) and
η (top right). Mistag rates for jets in jet data as a function of jet ET (bottom left) and η
(bottom right). Figures from [87].

requirements. The efficiency for tagging b jets in tt̄ MC events and the likelihood of

tagging non-b jets in jet triggered data is presented in Fig. 7.19.

• The jet probability (JP) [88] tagging algorithm uses the signed impact parameters

(Fig 7.20) of tracks associated with a jet to compute the likelihood that the tracks in

the jet originate from the primary vertex. Light flavor jets are uniformly distributed in

JP output between 0 and 1, while the algorithm is more likely to return small values

for heavy flavor jets. In order for a jet to be considered a b jet in this search, we require

the JP algorithm to return a value less than or equal to 0.05.
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Figure 7.20: The sign of the impact parameter of a track. The impact parameter is assigned
a negative (positive) sign if the angle φ is greater (less) than π/2. Figure from [88].

Figure 7.21: Distribution of values returned by the JP algorithm for simulated b (red), c
(blue) and light flavor jets (green). Figure from [88].
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Figure 7.22: (left) Efficiency of the JP tagging algorithm on b jets in tt̄ MC as a function of
jet ET . The efficiency is shown for PJ < 0.01 (red) and PJ < 0.05 (blue) selection. (right)
The likelihood of mistagging light flavor jets in jet data as a function of jet ET . The mistag
rate is shown for PJ < 0.01 (red) and PJ < 0.05 (blue) selection. We impose the PJ < 0.05
b tag cutoff (as opposed to 0.01) due to the significantly increased b tag efficiency. Figures
from [88].
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Table 7.30: Summary of jet/b-tag selection.

Jet Selection for PreTag Region

2 or more Cone 0.4 jets ET > 15 GeV, |η| < 2 and

1 of these jets with ET > 25 GeV → (PreTag)

b-tagging Selection for Signal Region

2 or more tight SECVTX tags → (TT)

If not found 1 Loose SECVTX tag and 1 JetProbability Tag (5%) → (L+JP)

If not found 1 tight SECVTX tag → (T)

While there is some overlap in the information used by the two algorithms, we find that

about 10% of all tight jets in our signal sample are exclusively tagged by the JP algorithm.

In order to identify the pair of jets in our PreTag event sample most likely to have been

produced in an H → bb̄ decay, we consider the SecVtx and JP algorithm outputs for each

possible pair of tight jets in the event in which at least one of the jets has ET ≥ 25 GeV. If

both jets in the pair meet the Tight SecVtx b tag requirements we classify the pair as having

a double tight tagged pair (TT). If the pair fail the TT requirement, and one jet is Loose

SecVtx tagged and the other has a JP value less than or equal to 0.05, we classify the pair

as having a loose plus jet probability tagged pair (L+JP). If the pair fails to meet the TT

or L+JP selection, it will receive a single tight classification (T) if one of the jets is Tight

SecVtx tagged.

In events with multiple jet pairs classified as T, L+JP, or TT we preferentially choose the

TT pair as the H → bb̄ candidate over L+JP or T pairs. Similarly L+JP pairs are chosen

over T pairs. This selection preference follows naturally from the Z+ bb̄ to Z+mistagged jet

ratios of the three tagging classifications: 14.9, 1.9, and 0.6 for TT, L+JP and T respectively.

When two jet pairs have the same classification (for example TT and TT) the pair with the

highest combined ET is selected as the H → bb̄ candidate. Our jet and b-tag requirements

are summarized in Table 7.30.
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7.7 Final Analysis Channels

With two Z categories (high S/B , low S/B) and three b-tag regions (TT, L+JP, and T)

we form six final event samples, as listed in Table 7.31.

Table 7.31: Analysis channels.

Channel Lepton ID b-Tag Requirements

Double Tag High High S/B Two Tight SecVtx Tags

Loose + 5% JP High High S/B One Loose SecVtx Tag & One 5% JetProbability Tag

Single Tag High High S/B One Tight SecVtx Tags

Double Tag Low Low S/B Two Tight SecVtx Tags

Loose + 5% JP Low Low S/B One Loose SecVtx Tag & One 5% JetProbability Tag

Single Tag Low Low S/B One Tight SecVtx Tags
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Chapter 8: Multvariate Techniques

Multivariate techniques combine multiple quantities to form a combined

signal/background discriminant and have become a standard tool of high energy physics.

This search relies on artificial neural networks (NN) and matrix element probabilities (ME)

to maximize the separation of ZH signal from background events.

8.1 Artificial Neural Networks

NNs have been utilized in previous searches for the SM Higgs in [89, 90, 91, 92] and others.

Figure 8.1 depicts a simple feed-forward NN with input layer, hidden layer, and output layer.

In a feed-forward NN information flows forward through the network, from the input layer

to the output layer. Each “node” in the input layer represents a measured or calculated

quantity such as the mass or momentum of a particle. Let the set {X1, X2, .., Xi, ..} denote

a collection of such quantities.

Acting as NN inputs, the values Xi are scaled by a collection of weight factors Wij before

being passed to the nodes in the hidden layer (denoted by the set {Y1, Y2, .., Yj, ..}), such

that the “jth” node in the hidden layer accepts a weighted sum of the inputs :

Y IN
j =

∑
i

Wij ×Xi (8.1)

Before the values, {Y IN
j }, are passed to the output layer, an activation function (g) is

applied. The activation function is typically of the form :

gj(x) = (1 + e−2[x+φh
j ])−1 (8.2)

chosen to approximate the activation behavior of neurons in biological systems. The

parameters φh
j are known as the “threshold” values of hidden nodes Yj.
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Each node in the hidden layer passes a value Y OUT
j :

Y OUT
j = gj(Y

IN
j ) (8.3)

to the output layer.

Each node in the output layer (denoted by the set {Z1, Z2, .., Zk, ..}) accepts a weighted

sum :

ZIN
k =

∑
j

Mjk × Y OUT
j (8.4)

where the set {Mjk} is the collection of weight factors applied between the hidden and

output layers. The final output values of the NN are formed by applying a second collection

of activation functions {g′} :

g′k(x) = (1 + e−2[x+φO
k ])−1 (8.5)

where the parameters φO
k are the threshold values of output nodes Zj.

For the simple NN architecture depicted in Fig. 8.1, the NN output value is given by :

ZOUT
1 = g′1

(
M11×g1(W11X1+W21X2+W31X3)+M21×g2(W12X1+W22X2+W32X3)

)
(8.6)

The NN achieves discriminating power by fitting the combined set of thresholds and

weights, {ω} = {Wij,Mjk, φ
h
j , φ

O
k }, to produce the desired output values for a given set of

training events. In this search we utilize the back-propogation (BP) algorithm [93] to fix

{ω}.

In BP a NN is formed with random initial values {ω0}. This NN is applied to a sample

of training patterns (in our search MC events), and the performance of the NN is rated
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according to the average error :

E =
1

2Np

×
Np∑
p=1

∑
k

(
Op

k − T p
k

)2

(8.7)

where k runs over each node in the output layer, Np is the total number of training patterns,

T p
k is the target (or desired) response from output node k on pattern p, and Op

k is the observed

response from output node k on pattern p. In BP, {ω} is updated after the NN is exposed

to a collection of training patterns according to :

{ω1} = {ω0} −
∂E0

∂ω
(8.8)

where stabalization and momentum terms [94] are omitted for simplicity.

BP is repeated until the NN achieves the desired performance. At regular intervals called

epochs (in our case, defined as exposure to all training events) the NN is exposed to an

independent “test” sample of events. To avoid over-fitting {ω} to the training patterns, the

average error is required to have similar values for both test and training samples.

8.2 Matrix Elements

Matrix element calculations have previously been applied in top mass measurements [95,

96] and Higgs boson searches [97, 36]. Here we present a brief overview of the method. A

detailed description of matrix element calculations in the context of a CDF measurement is

presented in [98].

Given a set of observables ~y (in our case the 4-momenta of the `+, `−, b, b̄ and the x and

y components of the ~6ET ), we form the likelihood that the observed quantities are the result
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Figure 8.1: Structure of a NN with 3 nodes in the input layer (yellow band), 2 nodes in a
single hidden layer (pink band) and 1 node in the output layer (purple band). Connections
between nodes are represented by solid black lines with weights Wij and Mjk indicated. The
values X1, X2, X3 represent experimentally observed quantities. Equations 8.1 and 8.3 show
expressions for the values Yj, while the final NN value Z1 is given in Eq. 8.6.
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of some SM process, P SM (such as ZH, tt̄, etc.) as :

L(~y|P SM) =

∫
|M(P SM , ~x)|2F(~y|~x)P (~x)d~x (8.9)

where M is the matrix element for the process P SM , ~x is the parton level momenta of the

final state particles, F is the “transfer function” which relates the probability of observing

~y given the parton quantities ~x, and P is the prior distribution of ~x.

In this search, M is computed at leading-order for ZH → `+`−bb̄, tt̄, and Z+jets processes

using MCFM [99]. While leptons are assumed to be perfectly measured, F are constructed

for jet energies by comparing the energy of generator level quarks in MC to the resulting jet

energy after the full detector simulation is applied [100]. The prior, P is determined by the

product of the parton density functions of the incoming proton and antiproton.

The following sections detail the application of NN’s and ME’s to this search.

8.3 NN Jet Energy Corrections

The dijet mass (Mjj) is one of the most useful quantities to discriminate ZH from

Z + jets and is even more powerful with improved jet energy resolution. In general,

incorrect measurement of jet energies can result in overestimation of 6ET . To improve the

dijet mass resolution we correct jet energies by a factor which depends on the 6ET direction

and magnitude, and projections onto the jet directions as described in Ref. [101].

We train a NN to correct jet energies back to generator (parton) values. The NN is

trained on a range of Higgs masses and Z + jets samples to ensure proper performance on

a variety of event types. The NN is given the measured (lead and second) jet transverse

energies along with information about the 6ET content. The full list of inputs is presented in

Table 8.1. The NN returns correction factors for the lead and second jet. The improvement

of the dijet mass resolution can be seen in Figs. 8.2 and 8.3.

To retain the strong ZH versus tt̄ discriminating power of the 6ET , we do not adjust the
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Table 8.1: Variables used to correct jet energies to parton level.

L5 Jet 1 ET

L5 Jet 2 ET

Jet 1 η
Jet 2 η

∆φ(jet1, jet2)
∆φ(6ET , jet1)
∆φ(6ET , jet2)

Jet 1 Projection onto 6ET

Jet 2 Projection onto 6ET

6ET magnitude
number of tight jets

the projection of the Z boson onto the lead ET jet
the projection of the Z boson onto the second ET jet

6ET for the change in jet energies after NN correction. Figure 8.4 shows 6ET with and without

the Neural Network corrections. All other event quantities are re-calculated using the NN

corrected jet energies.

8.4 Karlsruhe Flavor Separator

In previous iterations [35, 36] of this analysis the single tag categories have suffered from

low S/B due to the presence of large (about 40%) backgrounds from incorrectly tagged

light flavor jets. In order to increase the ability of our final analysis discriminants (2D-NN

discussed below) to separate this ’mistag’ background from signal, we include the output of

the Karlsruhe Neural Network (KNN) b − tagger [102]. The KNN is applied to jets with a

tight SevVtx tag. This NN is trained to separate b jets from c quark and light flavor jets by

returning high values (near 1) for b jets and low values (near −1) for incorrectly tagged jets.

The KNN output for the single tag channels (T) is shown in Fig. 8.5. The KNN output for

the lead ET jet in (TT) events is included for comparison.
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Figure 8.2: Effect of jet energy NN corrections on signal. The blue or green line shows the
signal dijet mass before corrections. The red line shows dijet mass after corrections. The
dijet mass is shown for the data and background model after corrections are applied.
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Figure 8.3: Effect of jet energy NN corrections on backgrounds. The teal line shows
the background dijet mass before corrections. The teal line does not include the mistag
background in the tag level plots.
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Figure 8.5: Distribution of KNN flavor separator output for single b-tag events (top row)
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8.5 Matrix Element Probabilities

As discussed in Sec. 8.2, we form matrix element probabilities (ME) as potential inputs

to our final 2D-NNs. Matrix element discriminants were first employed in the search for

ZH → ``bb̄ in [103]. We use the same calculation to determine the ME’s for this analysis.

We compute matrix element probabilities for the processes Z+jets, tt̄ and ZH signal, and

refer to the resulting likelihoods as Pjj, Ptt and Pzh respectively. We display the logarithm

of the ME probabilities by b tag and S/B category in Figs. 8.6 through 8.11. In general,

log (Pzh) tends closer to zero for ZH events than it does for background events. Similarly,

tt̄ and Z+jets events tend to have larger values in log (Ptt) and log (Pjj) repectively, than

events from other processes.

8.6 Two Dimensional NNs for S/B Discrimination

The two largest background classes at tag level are Z+jet events (Zbb, fakes, Zcc,

mistags etc.) and tt̄. We train two-dimensional NN’s to simultaneously separate signal

events from Z + jets and tt̄. The NN’s are designed to return two values (NNx,NNy) for a

given sample. For signal the NN targets the values (NNx=1,NNy=0), for Z + jets the NN

targets (NNx=0,NNy=0) and for tt̄, the target is (NNx=1,NNy=1). We optimize three

NNs (one for each tag category T,L+JP, and TT) with each NN trained on the same

sample of signal (MH = 120 GeV/c2) and tt̄ while the Z + jets training samples are

constructed to reflect the amount of light flavor, bb and cc events in each tag category.

We utilize a sequential input algorithm which automatically selects the most powerful

discriminants as NN inputs. This algorithm begins by forming single input NNs (considering

each of 41 available inputs) and finds the single input which produces the best performing

(lowest testing error) NN. Once the best single input is found, the algorithm loops through

the remaining pool of inputs to find the best two input NN. The algorithm continues in

this way until the addition of inputs no longer improves the testing error. The results of
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Figure 8.6: Distribution of matrix element probabilities for events in the TT tag high S/B
sample.
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Figure 8.7: Distribution of matrix element probabilities for events in the L+JP tag high S/B
sample.
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Figure 8.8: Distribution of matrix element probabilities for events in the T tag high S/B
sample.
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Figure 8.9: Distribution of matrix element probabilities for events in the TT tag low S/B
sample.
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Figure 8.10: Distribution of matrix element probabilities for events in the L+JP tag low S/B
sample.
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Figure 8.11: Distribution of matrix element probabilities for events in the T tag low S/B
sample.
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the variable selection algorithm are shown in Fig. 8.12. Once the algorithm has found the

optimal inputs for each b-tag category the final NN’s are trained.

We ensure that kinematic variables used as NN inputs are well described by our model

at the PreTag selection level. While trained on simulated MC events, we find that the NN

displays similar performance on data. We check the agreement of our data and model in

selected PreTag NN inputs and NN outputs which can be seen in Figs. 8.13 through 8.18.

We do not show the output of the KNN for PreTag events; it is only applicable to SevVtx

tight tagged jets. Similarly, the output of the NN optimized for the single T tag events is

not shown for PreTag events; it requires KNN output as an input.
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Figure 8.12: The selected NN variables, in order of selection from left to right, and the
average testing error produced by their addition.
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Figure 8.13: Pre-Tag high S/B NN inputs
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Figure 8.14: Pre-Tag high S/B NN inputs. Due to computing time required for ME
calculations, a random 10% of each MC background is shown (scaled by 10).



128

 projected onto Jet 2
t

Missing E
-100 -80 -60 -40 -20 0 20 40 60 80 100

 N
um

be
r 

of
 E

ve
nt

s

100

200

300

400

500

600

700

800

900

)-1CDF Run II Preliminary (4.1 fb

 projected onto Jet 2
t

Missing E
-100 -80 -60 -40 -20 0 20 40 60 80 100

 N
um

be
r 

of
 E

ve
nt

s

100

200

300

400

500

600

700

800

900
 WW,WZ,ZZ

 Fakes

 tt

 uncertainty

 data

 Z + lf jets

 Z + bb

 Z + cc

 1500 × 2 = 120 GeV/cH M

preTag (low)

)-1CDF Run II Preliminary (4.1 fb

)2 (GeV/cjjM
0 50 100 150 200 250 300 350 400

 N
um

be
r 

of
 E

ve
nt

s

20
40
60
80

100
120
140
160
180
200
220
240

)-1CDF Run II Preliminary (4.1 fb

)2 (GeV/cjjM
0 50 100 150 200 250 300 350 400

 N
um

be
r 

of
 E

ve
nt

s

20
40
60
80

100
120
140
160
180
200
220
240  WW,WZ,ZZ

 Fakes

 tt

 uncertainty

 data

 Z + lf jets

 Z + bb

 Z + cc

 1500 × 2 = 120 GeV/cH M

preTag (low)

)-1CDF Run II Preliminary (4.1 fb

Number of Tight Jets
0 1 2 3 4 5 6 7 8 9 10

 N
um

be
r 

of
 E

ve
nt

s

1000

2000

3000

4000

5000
)-1CDF Run II Preliminary (4.1 fb

Number of Tight Jets
0 1 2 3 4 5 6 7 8 9 10

 N
um

be
r 

of
 E

ve
nt

s

1000

2000

3000

4000

5000  WW,WZ,ZZ

 Fakes

 tt

 uncertainty

 data

 Z + lf jets

 Z + bb

 Z + cc

 1500 × 2 = 120 GeV/cH M

preTag (low)

)-1CDF Run II Preliminary (4.1 fb

 (GeV/c)
t

 jet PΣ
0 20 40 60 80 100 120 140 160 180 200

 N
um

be
r 

of
 E

ve
nt

s

20
40
60
80

100
120
140
160
180
200
220

)-1CDF Run II Preliminary (4.1 fb

 (GeV/c)
t

 jet PΣ
0 20 40 60 80 100 120 140 160 180 200

 N
um

be
r 

of
 E

ve
nt

s

20
40
60
80

100
120
140
160
180
200
220  WW,WZ,ZZ

 Fakes

 tt

 uncertainty

 data

 Z + lf jets

 Z + bb

 Z + cc

 1500 × 2 = 120 GeV/cH M

preTag (low)

)-1CDF Run II Preliminary (4.1 fb

sphericity
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 N
um

be
r 

of
 E

ve
nt

s

20

40

60

80

100

120

140

)-1CDF Run II Preliminary (4.1 fb

sphericity
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 N
um

be
r 

of
 E

ve
nt

s

20

40

60

80

100

120

140
 WW,WZ,ZZ

 Fakes

 tt

 uncertainty

 data

 Z + lf jets

 Z + bb

 Z + cc

 1500 × 2 = 120 GeV/cH M

preTag (low)

)-1CDF Run II Preliminary (4.1 fb

Figure 8.15: Pre-Tag low S/B NN inputs
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Figure 8.16: Pre-Tag low S/B NN inputs. Due to computing time required for ME
calculations, a random 10% of each MC background is shown (scaled by 10).
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Figure 8.17: Two dimensional NN output projections for high S/B pretag data. A cut on
NNy<0.1 is made to highlight the signal region. Due to computing time required for ME
calculations, a random 10% of each MC background is shown (scaled by 10).
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Figure 8.18: Two dimensional NN output projections for low S/B pretag data. A cut on
NNy<0.1 is made to highlight the signal region. Due to computing time required for ME
calculations, a random 10% of each MC background is shown (scaled by 10).
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Chapter 9: Systematic Uncertainties

To identify a potential ZH signal, we compare the two dimensional NN output observed

in data to the model of the output expected for the SM background. However, the NN

output of our model is affected by several sources of systematic uncertainty. The effects of

the uncertainties on NN output can be characterized by their affect on the NN output:

• “Rate” uncertainties change the normalization of NN outputs without affecting the

shape.

• “Shape” uncertainties change the shape of the of NN output and can also affect the

normalization.

To assess the agreement between the observed data and the model of SM background,

or to quantify the significance of any potential excess, the NN outputs for data, signal, and

each background are input to the MCLIMIT [104] program. MCLIMIT contains classes

for calculation of signal significance and upper limits on the signal content in the observed

data. Details of the calculation performed with MCLIMIT for this search are presented in

Chapter 10.

In MCLIMIT calculations, the sources of uncertainty on the NN output, called nuisance

parameters, are integrated over (utilizing a MC numerical integration method) assuming

that they are Gaussian distributions. For each rate uncertainty, the central value of the

SM prediction for the NN normalization is the mean of the associated Gaussian, while the

standard deviation is set by a 1σ variation under the rate uncertainty. Shape uncertainties

are included by providing MCLIMIT with three versions of each NN shape (template) varied

under the uncertainty :

• A ’Default’ shape with no systematic shift applied.

• An ’UP’ shape : the given uncertainty is shifted 1σ upwards from the default shape,

and all event kinematics are computed under this shift. Event selection is applied after
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Table 9.1: Summary of systematic uncertainties in terms of fractional acceptance change on
samples.

Systematic Uncertainty Samples Affected
Tevatron Luminosity 0.05 All MC

CDF Luminosity 0.04 All MC
Z+h.f cross-section 0.40 Z + bb̄, Z + cc̄
tt̄ cross-section 0.20 tt̄

Diboson cross-sections 0.115 ZZ,ZW,WW
Mistag uncertainty Histogram Shape & Acceptance Mistags
Trigger uncertainty 0.01 All MC

Lepton Reconstruction 0.01 All MC

b-tag scale factor {
0.04 All single tag MC (T)
0.08 All double SecVtx tag MC (TT)
0.11 All Loose + JP tag MC (L+JP)

Fakes 0.50 Fake ee, µµ
JES Histogram Shape & Acceptance All MC

ISR & FSR Histogram Shape & Acceptance Signal MC
ZH cross-section 0.05 Signal MC

lepton energy/momentum 0.015 All MC

the kinematics are shifted (allowing normalizations to change). Next, the modified

kinematic distributions are fed into our 2D-NNs producing output shapes that carry

the effect of the 1σ upward shift.

• A ’Down’ shape : the given uncertainty is shifted 1σ down from the default shape.

The mean of the Gaussian assumed for a given shape nuisance parameter is derived from

the normalization of the default shape, while the standard deviation is derived from the

normalizations of the up and down shapes.

The following sections discuss the sources of rate and shape uncertainties. Table 9.1

summarizes the systematic uncertainties applied in our limit calculations.
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9.1 Rate Uncertainties

Following Joint Physics Group [105] recommendations, we assume a 5% uncertainty on

the integrated luminosity (the “Tevatron Luminosity” systematic) to cover the uncertainty

on the total inelastic pp̄ cross-section. An additional 4% systematic is applied to cover the

uncertainty in the CDF luminosity measurement (the “CDF Luminosity” systematic).

We apply uncertainties of 4% (T), 8% (TT) and 11% (L+JP) to our b-tagged MC samples

to account for the systematic errors associated with the calculation of b-tag efficiencies and

scale factors. A 1% rate systematic is applied to all MC samples to cover the uncertainty

in measured trigger efficiencies. Similarly, an uncertainty of 1% is assigned for discrepancies

in lepton reconstruction efficiency between data and MC. An additional uncertainty of 1.5%

is applied to MC normalization to account for the effect of lepton energy or momentum

measurement on selection efficiency.

In order to cover the spread of fake rates measured from different jet triggered data

samples we assign a 50% uncertainty on our total fake estimate. We apply a 40% uncertainty

to Z + bb and Z + cc samples to cover the theoretical uncertainty on the Z+heavy flavor

jets cross-section. Similarly we apply an 11.5% cross-section uncertainty to all diboson

samples. For tt̄ samples we include a conservative 20% uncertainty to account for both the

theoretical uncertainty on the process cross-section and the difference between our simulated

top mass (175 GeV/c2) and current experimental measurements. For signal MC, we apply a

5% normalization systematic to cover theoretical cross-section uncertainty. The signal cross-

section uncertainty is applied only when presenting limits in relation to SM cross-section ×

branching ratio. Limits presented in picobarns are calculated without the 5% uncertainty.
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9.2 Uncertainties Affecting Normalization and NN

Output Shapes

Uncertainties which affect the value of measured quantities or which affect the weight

applied to a given event can result in uncertainties on the shape of NN output distributions.

We include uncertainties on the jet energy scale (JES), the amount of initial and final state

radiation (ISR/FSR) and the mistag event weighting as shape uncertainties in our limit

calculation.

The JES-varied NN outputs are produced by shifting the Joint Physics energy correction

factor applied to the lead and second ET jets by ±1σ. This shift can cause a given event to

migrate into or out of our final event sample, for example a low ET jet can pass the jet ET

cut under a +1σ correction shift, causing this systematic to also affect normalizations. The

ISR/FSR uncertainties are included by generating specific MC samples with increased or

decreased amounts of ISR/FSR. Following the Tevatron Higgs convention, this uncertainty

is only applied to signal; although we did find the effect of applying this (as a bin by

bin rate error) to all background MCs was negligible. The mistag shape uncertainties are

included by shifting the assigned mistag weights by ±1σ as specified by the mistag matrices.

Figures 9.1 through 9.6 show one dimensional projections of 2D NN output (templates) and

the effect of shape uncertainties. The low statistics observed in the WW templates do not

significantly affect the MCLIMIT calculation due to the small contribution of WW to the

total background model. Projections of the observed data are displayed for comparison.
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Figure 9.1: Projections of templates affected by shape uncertainties used in the calculation
of limits for the single tag high S/B category. Green lines show +1σ shifted templates, while
red lines show −1σ shifts.
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Figure 9.2: Projections of templates affected by shape uncertainties used in the calculation
of limits for the single tag low S/B category. Green lines show +1σ shifted templates, while
red lines show −1σ shifts.
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Figure 9.3: Projections of templates affected by shape uncertainties used in the calculation
of limits for the double tag high S/B category. Green lines show +1σ shifted templates,
while red lines show −1σ shifts.
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Figure 9.4: Projections of templates affected by shape uncertainties used in the calculation
of limits for the double tag low S/B category. Green lines show +1σ shifted templates, while
red lines show −1σ shifts.
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Figure 9.5: Projections of templates affected by shape uncertainties used in the calculation
of limits for the L+JP tag high S/B category. Green lines show +1σ shifted templates, while
red lines show −1σ shifts.
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Figure 9.6: Projections of templates affected by shape uncertainties used in the calculation
of limits for the L+JP tag low S/B category. Green lines show +1σ shifted templates, while
red lines show −1σ shifts.
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Chapter 10: Results

10.1 Results

Applying the b-tag selection to the data and background samples yields the final event

samples. Tables 10.1 and 10.2 show the expected and observed number of events in each

our final analysis channels. Figures 10.1 through 10.6 show the NN input distributions.

Figures 10.7 through 10.18 show the full NN output, while Figs. 10.19 and 10.20 shows NN

output projections.

Table 10.1: Comparison of observed and predicted event totals for tag level high S/B
selection.

( High S/B Categories )

Source Double T Tag L+JP Tag Single T Tag

tt̄ 7.0± 1.5 8.1± 1.9 17.3± 3.6

WW 0.02± 0.003 0.1± 0.01 0.2± 0.03

WZ 0.1± 0.01 0.5± 0.1 4.8± 0.7

ZZ 2.7± 0.4 3.4± 0.6 11.1± 1.5

Z+jets (bb̄) 16.1± 6.8 21.5± 9.2 105.4± 44.3

Z+jets (cc̄) 1.8± 0.7 8.0± 3.3 53.7± 22.6

Z+Mistags 0.9± 0.3 9.4± 3.2 151.6± 22.7

fakes 0.7± 0.3 1.8± 0.9 22.0± 11.0

ZH (120 GeV/c2) 0.5± 0.1 0.6± 0.1 1.4± 0.1

Total Background 29.3± 7.0 52.8± 10.5 366.1± 55.9

Data 23 56 406
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Figure 10.1: NN input distributions for the single tag high S/B channel.
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Figure 10.2: NN input distributions for the single tag low S/B channel.
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Figure 10.3: NN input distributions for the L+JP tag high S/B channel.
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Figure 10.4: NN input distributions for the L+JP tag low S/B channel.
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Figure 10.5: NN input distributions for the double tag high S/B channel.



148

)2 (GeV/cjjM
0 50 100 150 200 250 300 350

 N
um

be
r 

of
 E

ve
nt

s

1

2

3

4

5

)-1CDF Run II Preliminary (4.1 fb

)2 (GeV/cjjM
0 50 100 150 200 250 300 350

 N
um

be
r 

of
 E

ve
nt

s

1

2

3

4

5
 WW,WZ,ZZ

 Fakes
 tt
 uncertainty

 data
 mistags

 Z + bb
 Z + cc

 25 × 2 = 120 GeV/cH M

double T tag (low)
)-1CDF Run II Preliminary (4.1 fb

 (GeV/c)
t

 jet P!
0 20 40 60 80 100 120 140 160 180

 N
um

be
r 

of
 E

ve
nt

s

1

2

3

4

5

)-1CDF Run II Preliminary (4.1 fb

 (GeV/c)
t

 jet P!
0 20 40 60 80 100 120 140 160 180

 N
um

be
r 

of
 E

ve
nt

s

1

2

3

4

5
 WW,WZ,ZZ

 Fakes
 tt
 uncertainty

 data
 mistags

 Z + bb
 Z + cc

 25 × 2 = 120 GeV/cH M

double T tag (low)

)-1CDF Run II Preliminary (4.1 fb

Number of Tight Jets
0 1 2 3 4 5 6 7 8 9 10

 N
um

be
r 

of
 E

ve
nt

s

2
4

6

8

10

12

14

16
)-1CDF Run II Preliminary (4.1 fb

Number of Tight Jets
0 1 2 3 4 5 6 7 8 9 10

 N
um

be
r 

of
 E

ve
nt

s

2
4

6

8

10

12

14

16  WW,WZ,ZZ

 Fakes
 tt
 uncertainty

 data
 mistags

 Z + bb
 Z + cc

 25 × 2 = 120 GeV/cH M

double T tag (low)
)-1CDF Run II Preliminary (4.1 fb

sphericity
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 N
um

be
r 

of
 E

ve
nt

s

1

2

3

4

5
)-1CDF Run II Preliminary (4.1 fb

sphericity
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 N
um

be
r 

of
 E

ve
nt

s

1

2

3

4

5  WW,WZ,ZZ

 Fakes
 tt
 uncertainty

 data
 mistags

 Z + bb
 Z + cc

 25 × 2 = 120 GeV/cH M

double T tag (low)

)-1CDF Run II Preliminary (4.1 fb

 (GeV)
t

Missing E
0 20 40 60 80 100 120 140 160 180

 N
um

be
r 

of
 E

ve
nt

s

-210

-110

1

10

210

310

410

)-1CDF Run II Preliminary (4.1 fb

 (GeV)
t

Missing E
0 20 40 60 80 100 120 140 160 180

 N
um

be
r 

of
 E

ve
nt

s

-210

-110

1

10

210

310

410
 WW,WZ,ZZ

 Fakes
 tt
 uncertainty

 data
 mistags

 Z + bb
 Z + cc

double T tag (low)

)-1CDF Run II Preliminary (4.1 fb

log(Pzh)
-80 -70 -60 -50 -40 -30 -20 -10 0

 N
um

be
r 

of
 E

ve
nt

s

0

2

4

6

8

10
)-1CDF Run II Preliminary (4.1 fb

log(Pzh)
-80 -70 -60 -50 -40 -30 -20 -10 0

 N
um

be
r 

of
 E

ve
nt

s

0

2

4

6

8

10
double T Tag (low)
 signal (Mh=120 GeV/c2) X 50 

 WW,WZ,ZZ

 Fakes
 tt
 uncertainty

 data
 mistags

 Z + bb
 Z + cc

)-1CDF Run II Preliminary (4.1 fb

log(Ptt)
-80 -70 -60 -50 -40 -30 -20 -10 0

 N
um

be
r 

of
 E

ve
nt

s

0
1
2
3
4
5
6
7
8
9

)-1CDF Run II Preliminary (4.1 fb

log(Ptt)
-80 -70 -60 -50 -40 -30 -20 -10 0

 N
um

be
r 

of
 E

ve
nt

s

0
1
2
3
4
5
6
7
8
9 double T Tag (low)

 signal (Mh=120 GeV/c2) X 50 

 WW,WZ,ZZ

 Fakes
 tt
 uncertainty

 data
 mistags

 Z + bb
 Z + cc

)-1CDF Run II Preliminary (4.1 fb

Figure 10.6: NN input distributions for the double tag low S/B channel.
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Table 10.2: Comparison of observed and predicted event totals for tag level low S/B selection.
Blank entries denote negligible contributions.

( Low S/B Categories )

Source Double T Tag L+JP Tag Single T Tag

tt̄ 2.9± 0.6 3.2± 0.8 8.9± 1.9

WW 0.02± 0.003 0.1± 0.02

WZ 0.1± 0.02 1.2± 0.2

ZZ 0.5± 0.1 0.5± 0.1 2.0± 0.3

Z+jets (bb̄) 3.2± 1.4 4.0± 1.7 21.1± 8.9

Z+jets (cc̄) 0.3± 0.1 1.6± 0.7 11.0± 4.6

Z+Mistags 0.4± 0.1 3.8± 1.3 50.0± 7.5

fakes 1.4± 0.7 1.1± 0.5 22.5± 11.3

ZH (120 GeV/c2) 0.1± 0.01 0.1± 0.02 0.2± 0.03

Total Background 8.7± 1.7 14.3± 2.4 116.8± 17.0

Data 12 14 116
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10.2 Observed and Expected Limits

The observed event yields in data agree with the events predicted by our background

model and we do not find a significant excess consistent with a Higgs signal. We use the

MCLIMIT [104] machinery to quantify the maximum allowed ZH signal in the data when

compared to the expected SM background in each bin of the 2D NN output. The

MCLIMIT software package allows for the computation of Bayesian limits [8, 106] across

multiple channels, background sources, and uncertainties.

To compute the 95% CL upper limit on the signal content of our data, we form the

binned likelihood as :

L =

Nchan∏
i=1

×
Nbins∏
j=1

[(s′ij +
∑Nbkg

k=1 b
′
ijk)

nij × e−(s′ij+
PNbkg

k=1 b′ijk)

(nij)!

]
(10.1)

where Nchan is the number of analysis channels (6 in our case), Nbins is the total number

of bins in the full two-dimensional NN output (21 × 21 = 441 total including histogram

overflow bins) of each channel, nij is the number of data events observed in bin j of channel

i, Nbkg is equal to the total number of background processes contributing to the data model,

b′ijk represents the number of background events in bin j of channel i from background source

k, and s′ij stands for the number of signal events in bin j of channel i.

We include uncertainties on the background and signal estimates as Gaussian

distributions, with the lower bound of the integration set to zero. This eliminates negative

fluctuations in sample normalization. Assuming a flat (constant) prior on the number of

signal events in the data, we form the Bayesian prior as :

π = π(~s)×
Nbkg∏
k=1

Nunc∏
`=1

1√
2πσB

ijk`

e
−

(bijk−b′ijk)2

2(σB
ijk`

)2 ×
Nunc∏
`=1

1√
2πσS

ij`

e
−

(sij−s′ij)2

2(σS
ij`

)2 (10.2)

where π(~s) is the flat prior on the total signal content ~s, Nunc is the number of

uncertainties considered, σB
ijk` represents the one-sigma uncertainty from systematic ` on
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Figure 10.7: NN output for high S/B single tag (T) channel data, ZH (MH = 120GeV/c2),
tt̄ and Diboson events. The Z+jets, ZH, and tt̄ corners are indicated in red text.
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Figure 10.8: NN output for high S/B single tag (T) channel Z+ bb̄, Z+ bc̄, Fake, and mistag
events. The Z+jets, ZH, and tt̄ corners are indicated in red text.
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Figure 10.9: NN output for high S/B single tag (L+JP) channel data, ZH (MH =
120GeV/c2), tt̄ and Diboson events. The Z+jets, ZH, and tt̄ corners are indicated in
red text.
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Figure 10.10: NN output for high S/B single tag (L+JP) channel Z + bb̄, Z + bc̄, Fake, and
mistag events. The Z+jets, ZH, and tt̄ corners are indicated in red text.
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Figure 10.11: NN output for high S/B single tag (TT) channel data, ZH (MH = 120GeV/c2),
tt̄ and Diboson events. The Z+jets, ZH, and tt̄ corners are indicated in red text.
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Figure 10.12: NN output for high S/B single tag (TT) channel Z + bb̄, Z + bc̄, Fake, and
mistag events. The Z+jets, ZH, and tt̄ corners are indicated in red text.
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Figure 10.13: NN output for low S/B single tag (T) channel data, ZH (MH = 120GeV/c2),
tt̄ and Diboson events. The Z+jets, ZH, and tt̄ corners are indicated in red text.
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Figure 10.14: NN output for low S/B single tag (T) channel Z+ bb̄, Z+ bc̄, Fake, and mistag
events. The Z+jets, ZH, and tt̄ corners are indicated in red text.
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Figure 10.15: NN output for low S/B single tag (L+JP) channel data, ZH (MH =
120GeV/c2), tt̄ and Diboson events. The Z+jets, ZH, and tt̄ corners are indicated in
red text.
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Figure 10.16: NN output for low S/B single tag (L+JP) channel Z + bb̄, Z + bc̄, Fake, and
mistag events. The Z+jets, ZH, and tt̄ corners are indicated in red text.
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Figure 10.17: NN output for low S/B single tag (TT) channel data, ZH (MH = 120GeV/c2),
tt̄ and Diboson events. The Z+jets, ZH, and tt̄ corners are indicated in red text.
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Figure 10.18: NN output for low S/B single tag (TT) channel Z + bb̄, Z + bc̄, Fake, and
mistag events. The Z+jets, ZH, and tt̄ corners are indicated in red text.
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Figure 10.19: NN output projections for the final high (S/B) analysis channels onto the
Z+jets – ZH (x) axis of the 2D output. A cut of NNy<0.1 is made to emphasize the signal
region.
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Figure 10.20: NN output projections for the final low (S/B) analysis channels onto the
Z+jets – ZH (x) axis of the 2D output. A cut of NNy<0.1 is made to emphasize the signal
region.
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background k in bin j of channel i, bijk is the SM prediction for the number of events from

background k in bin j of channel i, σS
ij` represents the one-sigma uncertainty from

systematic ` on the signal in bin j of channel i, and sij is an additional parameter

representing the number of signal events in bin j of channel i.

The 95% confidence level upper limit on the number of total signal events ~sup is obtained

by integrating over the likelihood convoluted with the Bayesian prior :

0.95 =

∫ ~sup

0

∫∞
0

∫∞
0

[L × π] d~b′ d~s′ d~s∫∞
0

∫∞
0

∫∞
0

[L × π] d~b′ d~s′ d~s
(10.3)

The value of ~sup obtained from Eq. 10.3 is divided by the total signal content (at each

Higgs mass considered) to express the upper limits as multiples of the predicted SM value

for σZH × BR(H → bb̄). Upper limits expressed in picobarns are obtained by dividing ~sup

by the total integrated luminosity.

As mentioned in Chapter 9, a Gaussian is included in Eq. 10.2 to account for uncertainty

on the SM cross-sections when the upper limits are presented as multiples of σZH×BR(H →

bb̄); this term is removed when calculating limits in picobarns.

To compare the observed limits to the distribution of upper limits predicted by our

background model and systematics alone, we run 1000 pseudo-experiments at each Higgs

mass. For each pseudo-experiment, the background templates are fluctuated within their

uncertainties to generate a pseudo-data set (replacing the nij in equation 10.1). The

distribution of limits obtained for MH = 115 GeV/c2 is shown in Fig. 10.21. The median of

the pseudo-experiment limit distribution is the expected 95% CL upper limit.

Expected and observed limits for individual channels assuming a Higgs mass of

115 GeV/c2 are shown in Table 10.3. Expected and observed limits for all six channels

combined for 100 ≤ MH ≤ 150 GeV/c2 are shown in Table 10.4 and Fig. 10.22 as multiples

of σZH ×BR(H → bb̄). Table 10.5 and Fig. 10.23 present the limits in pb. Variation in the

pb limits is due to the dependence of the signal systematic uncertainties on Higgs mass

(the σS
ij` in Eq. 10.2 depend on the Higgs mass).
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Figure 10.21: Distribution of 95% CL upper limits from 1000 pseudo-experiements at MH =
115 GeV/c2 with 1σ (green) and 2σ (yellow) bands indicated. The expected limit (black
arrow) is the median of the pseudo-experiement limit distribution. The observed limit (red
arrow) is shown for comparison.

Table 10.3: Expected and observed limits divided by the SM value for σZH × BR(H → bb̄)
for individual channels at MH = 115 GeV/c2. The total number of observed data events,
predicted total background events, and the S/

√
B are also shown.

Channel Observed Events Total Bkg. S/
√
B Expected+1σ

−1σ Observed

TT High S/B 23 29.3± 7.0 0.13 12.1 + 5.7
− 5.5 11.3

L+JP High S/B 56 52.8± 10.5 0.09 15.98 + 6.95
− 7.6 10.6

T High S/B 406 366.1± 55.9 0.09 15.5 + 7.1
− 7.98 16.9

TT Low S/B 12 8.7± 1.7 0.04 49.2 + 18.95
− 19.9 58.2

L+JP Low S/B 14 14.3± 2.4 0.03 50.6 + 21.6
− 21.99 71.1

T Low S/B 116 116.8± 17.0 0.02 41.6 + 19.99
− 20.04 38.5

Combined 6.8 + 3.22
− 2.04 5.91
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Table 10.4: Expected and observed 95% CL upper limits on σZH ×BR(H → bb̄) divided by
the SM values.

MH( GeV/c2) Expected+1σ
−1σ Observed

100 6.7 + 2.91
− 2.18 4.53

105 6.38 + 2.67
− 1.94 4.6

110 6.34 + 3.17
− 1.9 5.25

115 6.8 + 3.22
− 2.04 5.91

120 8.49 + 3.58
− 2.57 7.89

125 10.21 + 3.99
− 3.18 8.14

130 12.79 + 6.27
− 3.9 10.3

135 18.74 + 8.34
− 5.79 14.41

140 28.49 + 12.22
− 8.67 19.27

145 45.34 + 18.76
− 13.31 24.22

150 73.72 + 37.3
− 23.07 42.93
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Table 10.5: Expected and observed 95% CL upper limits on σZH × BR(H → bb̄). The SM
values are included for comparison.

MH( GeV/c2) Expected+1σ
−1σ (pb) Observed (pb) SM Value (pb)

100 0.87 + 0.4
− 0.27 0.63 0.1368

105 0.72 + 0.32
− 0.23 0.58 0.1150

110 0.62 + 0.26
− 0.2 0.52 0.0960

115 0.53 + 0.26
− 0.17 0.44 0.0789

120 0.53 + 0.22
− 0.16 0.49 0.0635

125 0.48 + 0.21
− 0.14 0.44 0.0496

130 0.49 + 0.21
− 0.15 0.41 0.0375

135 0.5 + 0.21
− 0.16 0.39 0.0271

140 0.51 + 0.25
− 0.16 0.34 0.0188

145 0.54 + 0.23
− 0.16 0.33 0.0123

150 0.57 + 0.25
− 0.17 0.35 0.0074
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Chapter 11: Conclusions

11.1 Sensitivity Gain

The SM Higgs search presented in this dissertation achieves significant improvement in

sensitivity over previous CDF II searches in the mode ZH → `+`−bb̄ [35, 36], producing the

world’s strongest upper limits on the σSM
ZH × BR(H → bb̄). Table 11.1 shows the degree of

improvement achieved by this search compared to previous CDF II efforts.

Table 11.1: Comparison of observed 95% CL upper limits on σSM
ZH × BR(H → bb̄) for

CDF II searches @ MH = 115 GeV/c2. The absolute improvement is calculated by dividing
previous limits by the current limit (in 4.1 fb−1). The projected limits are calculated under
the assumption that sensitivity improves with increased integrated luminosity (L) as 1/

√
L.

The relative improvement is the ratio of the projected limits to the current.

Analysis Limit (× SM) Absolute Imp. Projected Limit (× SM) Relative Imp.

1 fb−1 [35] 16 2.7 7.9 1.34

2.7 fb−1 [36] 8.2 1.4 6.7 1.14

4.1 fb−1 5.9 - 5.9 -

The improvement in sensitivity is due to the combined effect of several factors :

• increased total integrated luminosity

• expanded trigger selection (this search is the first to use the Z NOTRACK trigger)

• the addition of Z candidates formed from forward electron pairs

• compensation for gaps in calorimeter coverage with the CrkTrk electron category

• incorporation of the Jet Probability b-tagging algorithm for 3 b-tag classes

• division of the final event sample into separate categories by S/
√
B
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• improved rejection of incorrectly b-tagged jets through the Karlsruhe NN [102]

• updated NN jet energy corrections

• the combination of matrix element probabilities with classification NNs

• the use of discriminant NNs optimized for specific b-tag classes

11.2 Combination With Other CDF II Higgs Searches

Due to the low signal expectation and large background rates, no single Tevatron SM

Higgs mode is expected to achieve discovery or exclusion alone at low mass. To maximize

the overall sensitivity of the CDF II experiment to a Higgs signal, a combined search across

multiple Higgs production and decay modes is performed.

All NN output histograms (signal, background, and systematic variations) were passed

to the CDF Higgs Working Group (CDFHWG) [107] for inclusion in the combined CDF

Higgs result [108]. The results presented in this dissertation were cross-checked by the

CDFHWG with a similar Bayesian computation and an alternate CLs method. Due to the

large (21 × 21 × 6) number of bins from the ZH 2D-NN outputs, all CDF ZH histograms

were reduced to a 10×10 binning by the CDFHWG. This resulted in a roughly 5% reduction

in sensitivity. Despite the rebinning, the ZH → `+`−bb̄ search contributed strongly to the

CDF upper limits on SM Higgs production at MH = 115 GeV/c2 of 3.12×SM observed and

2.38 × SM expected. CDF upper limits for the mass range 200 ≥ MH ≥ 100 GeV/c2 are

shown in Figure 11.1.

11.3 Tevatron Combination

To further improve the Tevatron’s sensitivity to a SM Higgs signal, a combination of

CDF and D0 SM Higgs results was performed by the Tevatron New Phenomena and Higgs

Working Group (TEVNPHWG) [109]. The 2D-NN histograms produced for this dissertation
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were passed to the TEVNPHWG (after rebinning), and the upper limits were cross-checked

by members of the D0 experiment. The CDF ZH → `+`−bb̄ search contributed to the latest

Tevatron limits on SM Higgs production at MH = 115 GeV/c2 of 2.70 × SM observed and

1.78× SM expected.

The combination of CDF and D0 searches excludes the mass range

166 ≥ MH ≥ 163 GeV/c2 at the 95% CL. The reduced exclusion range (when compared to

the March 2009 3.2), results from an upward fluctuation in the latest fb−1 of data. The

combined Tevatron upper limits for the mass range 200 ≥ MH ≥ 100 GeV/c2 are shown in

Figure 11.2.
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11.4 Future Prospects

The ZH → `+`−bb̄ mode will continue to be an important component of the Tevatron

SM Higgs search. To date, CDF has recored 2 fb−1 of collision data beyond the 4.1 fb−1 used

in this dissertation. The addition of this data is expected to yield a 22% improvement in

sensitivity to a ZH signal.

CDF may continue to record Tevatron collisions through the Fall of 2011, bringing the

total Run II data sample to about 10 fb−1. Applying the current analysis to a data sample

of this size would produce upper limits roughly 36% less than the current values.

Beyond the gain from increased integrated luminosity, future iterations of the CDF ZH →

`+`−bb̄ will feature several improvements :

• expanded use of muon triggers

• likelihood or NN based lepton identification

• NN b-tagging algorithms

• addition of a single loose SecVtx b-tag channel

which combined may net a 5− 10% sensitivity increase.

In the coming years, LHC searches for the SM Higgs boson may yield a discovery or

further increase the experimentally excluded range of MH . However, due to the increased

background from bb̄ QCD jet pairs, detection or exclusion of a signal consistent with ZH →

`+`−bb̄ will be a challenge; meaning that Tevatron limits on σSM
ZH ×BR(H → bb̄) may stand

for some time.
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ABSTRACT

A SEARCH FOR THE STANDARD MODEL HIGGS BOSON IN THE
PROCESS ZH → `+`−bb̄ IN 4.1 fb−1 OF CDF II DATA

by

SHALHOUT Z. SHALHOUT

August 2010

Advisor: Robert Harr

Major: Physics

Degree: Doctor of Philosophy

This dissertation presents a search for the standard model (SM) Higgs boson in the

associated production process ZH → `+`−bb̄ using 4.1 fb−1 of Tevatron pp̄ collision data

collected with the CDF II detector. To increase the sensitivity to a ZH signal over

previous CDF searches [35, 36], we implement new electron and expanded b-jet

identification algorithms. We utilize neural network classifiers enhanced with matrix

element probabilities, a b-jet identifying neural network [102], and multivariate jet energy

corrections to maximize the separation of signal from SM backgrounds.

We employ three neural network classifiers separately optimized for each of our three

b-tag categories. We find good agreement between the observed data and the predicted SM

backgrounds. The neural network output for data is compared to the output for the expected

SM background to set 95% confidence level upper limits on the ZH production cross section

times the branching ratio for H → bb̄. We consider Higgs boson masses between 100 and

150 GeV/c2 in 5 GeV steps. For a Higgs boson mass of 115 GeV/c2 we observe (expect) a

95% confidence level upper limit of 5.9 (6.8) times σSM
ZH ×BR(H → bb̄).
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